Representation type of Jordan algebras

Iryna Kashuba

Muizenberg, July 2015

I.Kashuba Representation type of Jordan algebras

Jordan algebras arose from the search of "exceptional" setting for quantum mechanics.

The "Copenhagen model":

- the physical observables are Hermitian matrices (or operators on Hilbert space);
- the basic operations are multiplication by λ ∈ C, addition, multiplication of matrices, adjoint operator.

Most of matrix operations are not observable! In 1932 the German physicist Pascual Jordan proposed a program to discover *"a new algebraic setting for quantum mechanics"*, Jordan has chosen a new observable operation called **quasi-multiplication**

$$x \cdot y := \frac{1}{2}(xy + yx).$$

Next step to decide empirically what axioms or laws this operation obey.

Jordan algebras arose from the search of "exceptional" setting for quantum mechanics.

The "Copenhagen model":

- the physical observables are Hermitian matrices (or operators on Hilbert space);
- the basic operations are multiplication by $\lambda \in \mathbb{C}$, addition, multiplication of matrices, adjoint operator.

Most of matrix operations are not observable!

In 1932 the German physicist Pascual Jordan proposed a program to discover *"a new algebraic setting for quantum mechanics"*, Jordan has chosen a new observable operation called **quasi-multiplication**

$$x \cdot y := \frac{1}{2}(xy + yx).$$

Next step to decide empirically what axioms or laws this operation obey.

Jordan algebras arose from the search of "exceptional" setting for quantum mechanics.

The "Copenhagen model":

- the physical observables are Hermitian matrices (or operators on Hilbert space);
- the basic operations are multiplication by $\lambda \in \mathbb{C}$, addition, multiplication of matrices, adjoint operator.

Most of matrix operations are not observable!

In 1932 the German physicist Pascual Jordan proposed a program to discover *"a new algebraic setting for quantum mechanics"*, Jordan has chosen a new observable operation called **quasi-multiplication**

$$x \cdot y := \frac{1}{2}(xy + yx).$$

Next step to decide empirically what axioms or laws this operation obey.

Definition

A Jordan algebra J consists of a real vector space equipped with a bilinear product $x \cdot y$ satisfying the commutative law and the Jordan identity

$$x \cdot y = y \cdot x,$$

$$(x^2 \cdot y) \cdot x = x^2 \cdot (y \cdot x), \ \forall x, y \in J.$$
 (1)

A Jordan algebra is formally real if

$$x_1^2 + \cdots + x_n^2 = 0 \Longrightarrow x_1 = \cdots = x_n = 0.$$

Any associative algebra A over \mathbb{R} gives rise to a Jordan algebra A^+ under quasi-multiplication: the product $x \cdot y$ is clearly commutative and satisfies the Jordan identity.

A Jordan algebra is called **special** if it can be realized as a Jordan subalgebra of some A^+ . For example, if A has an involution \star then the subspace of hermitian elements $H(A, \star) = \{x^* = x \mid x \in A\}$ forms a special Jordan algebra.

Definition

A Jordan algebra J consists of a real vector space equipped with a bilinear product $x \cdot y$ satisfying the commutative law and the Jordan identity

$$x \cdot y = y \cdot x,$$

$$(x^2 \cdot y) \cdot x = x^2 \cdot (y \cdot x), \ \forall x, y \in J.$$
 (1)

A Jordan algebra is formally real if

$$x_1^2 + \cdots + x_n^2 = 0 \Longrightarrow x_1 = \cdots = x_n = 0.$$

Any associative algebra A over \mathbb{R} gives rise to a Jordan algebra A^+ under quasi-multiplication: the product $x \cdot y$ is clearly commutative and satisfies the Jordan identity.

A Jordan algebra is called **special** if it can be realized as a Jordan subalgebra of some A^+ . For example, if A has an involution \star then the subspace of hermitian elements $H(A, \star) = \{x^* = x \mid x \in A\}$ forms a special Jordan algebra.

One obtains another special formally real Jordan algebra (called **spin factor** *JSpin*_n or **Jordan algebra of Clifford type**) on the space $\mathbb{R}^1 \oplus \mathbb{R}^n$, when $n \ge 2$, by making 1 acts as a unit and defining $v \cdot w = \langle v, w \rangle 1$, where $v, w \in \mathbb{R}^n$ and \langle , \rangle is an inner product in \mathbb{R}^n .

What he physicists were looking for were Jordan algebras where there is no invisible structure xy governing the visible structure $x \cdot y$. A Jordan algebra \mathcal{J} is called **exceptional** if it is not special, i.e. does not result from quasi-multiplication.

One obtains another special formally real Jordan algebra (called spin factor *JSpin_n* or Jordan algebra of Clifford type) on the space $\mathbb{R}1 \oplus \mathbb{R}^n$, when $n \ge 2$, by making 1 acts as a unit and defining $v \cdot w = \langle v, w \rangle 1$, where $v, w \in \mathbb{R}^n$ and \langle , \rangle is an inner product in \mathbb{R}^n .

What he physicists were looking for were Jordan algebras where there is no invisible structure xy governing the visible structure $x \cdot y$. A Jordan algebra \mathcal{J} is called **exceptional** if it is not special, i.e. does not result from quasi-multiplication.

One obtains another special formally real Jordan algebra (called spin factor *JSpin_n* or Jordan algebra of Clifford type) on the space $\mathbb{R}1 \oplus \mathbb{R}^n$, when $n \ge 2$, by making 1 acts as a unit and defining $v \cdot w = \langle v, w \rangle 1$, where $v, w \in \mathbb{R}^n$ and \langle , \rangle is an inner product in \mathbb{R}^n .

What he physicists were looking for were Jordan algebras where there is no invisible structure xy governing the visible structure $x \cdot y$. A Jordan algebra \mathcal{J} is called **exceptional** if it is not special, i.e. does not result from quasi-multiplication.

One obtains another special formally real Jordan algebra (called spin factor *JSpin_n* or Jordan algebra of Clifford type) on the space $\mathbb{R}1 \oplus \mathbb{R}^n$, when $n \ge 2$, by making 1 acts as a unit and defining $v \cdot w = \langle v, w \rangle 1$, where $v, w \in \mathbb{R}^n$ and \langle , \rangle is an inner product in \mathbb{R}^n .

What he physicists were looking for were Jordan algebras where there is no invisible structure xy governing the visible structure $x \cdot y$. A Jordan algebra \mathcal{J} is called **exceptional** if it is not special, i.e. does not result from quasi-multiplication.

In 1934 Jordan, John von Neumann and Eugene Wigner showed that every finite-dimensional formally real Jordan algebra can be written as a direct sum of so-called simple ones, which are four infinite families, together with one exceptional case:

- The Jordan algebra of *n* × *n* self-adjoint real matrices, complex matrices and quaternionic matrices;
- The Jordan algebra of Clifford type corresponding to usual inner product in \mathbb{R}^n ;
- The Jordan algebra H₃(𝔅) of 3 × 3 self-adjoint octonionic matrices, (an exceptional Jordan algebra called the Albert algebra, since A.Albert showed that it is indeed exceptional).

There was only one exceptional algebra in the list!!! $H_n(\mathbb{O})$, n > 3 is not Jordan, while $H_2(\mathbb{O}) \simeq JSpin_9$. The lone $H_3(\mathbb{O})$ was too isolated to give a clue as to possible existence of inf-dimensional exceptional algebras.

Half a centure later Efin Zelmanov quashed all remaining hopes showing that even in infinite dimensions there are no simple exceptional Jordan algebras other than Albert algebras. 2. . . . In 1934 Jordan, John von Neumann and Eugene Wigner showed that every finite-dimensional formally real Jordan algebra can be written as a direct sum of so-called simple ones, which are four infinite families, together with one exceptional case:

- The Jordan algebra of *n* × *n* self-adjoint real matrices, complex matrices and quaternionic matrices;
- The Jordan algebra of Clifford type corresponding to usual inner product in \mathbb{R}^n ;
- The Jordan algebra H₃(𝔅) of 3 × 3 self-adjoint octonionic matrices, (an exceptional Jordan algebra called the Albert algebra, since A.Albert showed that it is indeed exceptional).

There was only one exceptional algebra in the list!!! $H_n(\mathbb{O})$, n > 3 is not Jordan, while $H_2(\mathbb{O}) \simeq JSpin_9$. The lone $H_3(\mathbb{O})$ was too isolated to give a clue as to possible existence of inf-dimensional exceptional algebras.

Half a centure later Efin Zelmanov quashed all remaining hopes showing that even in infinite dimensions there are no simple exceptional Jordan algebras other than Albert algebras. Let $\mathbf{k} = \bar{\mathbf{k}}$, char $\mathbf{k} = 0$. A **Jordan algebra** is a commutative **k**-algebra (J, \cdot) satisfying Jordan identity

$$(x^2 \cdot y) \cdot x = x^2 \cdot (y \cdot x) \quad x, y \in J.$$
(2)

Example

• Denote
$$H_n(A) = H(M_n(A), \overline{j}) \subset M_n(A)^+$$
.

② Let f be a symmetric bilinear form on E, then J(E, f) = E ⊕ k with respect to

 $(\alpha + x) \cdot (\beta + y) = \alpha\beta + f(x, y)1 + (\alpha y + \beta x),$

 $\alpha, \beta \in \mathbf{k}, x, y \in E$ is a Jordan algebra of Clifford type.

Let O be an Caley algebra over k, then A = H₃(O) is called the Albert algebra

Let $\mathbf{k} = \bar{\mathbf{k}}$, char $\mathbf{k} = 0$. A **Jordan algebra** is a commutative **k**-algebra (J, \cdot) satisfying Jordan identity

$$(x^2 \cdot y) \cdot x = x^2 \cdot (y \cdot x) \quad x, y \in J.$$
(2)

Example

- Denote $H_n(A) = H(M_n(A), \overline{j}) \subset M_n(A)^+$.
- 2 Let f be a symmetric bilinear form on E, then $J(E, f) = E \oplus \mathbf{k}$ with respect to

$$(\alpha + x) \cdot (\beta + y) = \alpha \beta + f(x, y)\mathbf{1} + (\alpha y + \beta x),$$

 $\alpha, \beta \in \mathbf{k}, x, y \in E$ is a Jordan algebra of Clifford type.

Let O be an Caley algebra over k, then A = H₃(O) is called the Albert algebra Suppose M is a k-vector space equipped with two bilinear mappings

$$I, r: J \otimes M \rightarrow M$$
 $I: (a, m) \rightarrow am$, $r: (a, m) \rightarrow ma$,

and define a product on $\Omega = J \oplus M$

$$(a_1 + m_1) \circ (a_2 + m_2) = a_1 \cdot a_2 + a_1 m_2 + m_1 a_2.$$

M is a Jordan bimodule for $J \Leftrightarrow \Omega = (\Omega, \circ)$ is a Jordan algebra. Equivalently a linear map $\rho : J \to \operatorname{End}_k M$, $\rho(a)m = am$ defines a **(bi)representation** if for all $a, b \in J$

$$[\rho(a),\rho(a\cdot a)]=0,$$

 $2\rho(\mathbf{a})\rho(\mathbf{b})\rho(\mathbf{a})+\rho((\mathbf{a}\cdot\mathbf{a})\cdot\mathbf{b})=2\rho(\mathbf{a})\rho(\mathbf{a}\cdot\mathbf{b})+\rho(\mathbf{b})\rho(\mathbf{a}\cdot\mathbf{a}).$

Suppose M is a k-vector space equipped with two bilinear mappings

$$I, r: J \otimes M \to M$$
 $I: (a, m) \to am, r: (a, m) \to ma$

and define a product on $\Omega = J \oplus M$

$$(a_1 + m_1) \circ (a_2 + m_2) = a_1 \cdot a_2 + a_1 m_2 + m_1 a_2.$$

M is a Jordan bimodule for $J \Leftrightarrow \Omega = (\Omega, \circ)$ is a Jordan algebra. Equivalently a linear map $\rho : J \to \operatorname{End}_k M$, $\rho(a)m = am$ defines a **(bi)representation** if for all $a, b \in J$

$$[\rho(\mathbf{a}), \rho(\mathbf{a} \cdot \mathbf{a})] = \mathbf{0},$$

 $2\rho(\mathbf{a})\rho(\mathbf{b})\rho(\mathbf{a})+\rho((\mathbf{a}\cdot\mathbf{a})\cdot\mathbf{b})=2\rho(\mathbf{a})\rho(\mathbf{a}\cdot\mathbf{b})+\rho(\mathbf{b})\rho(\mathbf{a}\cdot\mathbf{a}).$

For any J the category of k-finite dimensional J-bimodules is equivalent to the category of finite dimensional left U-modules for some associative algebra called the **universal multiplicative enveloping algebra** U = U(J).

The algebra U can be constructed as a quotient of the tensor algebra F(J)/R, where R is an ideal generated by the elements:

 $a_1 \otimes a_2 \otimes a_3 + a_3 \otimes a_2 \otimes a_1 + (a_1 \cdot a_3) \cdot a_2$ $-a_1 \otimes a_2 \cdot a_3 - a_2 \otimes a_1 \cdot a_3 - a_3 \otimes a_1 \cdot a_2,$ $a_1 \otimes a_2 \cdot a_3 + a_2 \otimes a_1 \cdot a_3 + a_3 \otimes a_1 \cdot a_2$ $-a_2 \cdot a_3 \otimes a_1 - a_1 \cdot a_3 \otimes a_2 - a_1 \cdot a_2 \otimes a_3, \quad a_1, a_2, a_3 \in J.$

We denote by *J*-mod the category of finite dimensional *J*-bimodules.

For any J the category of k-finite dimensional J-bimodules is equivalent to the category of finite dimensional left U-modules for some associative algebra called the **universal multiplicative enveloping algebra** U = U(J).

The algebra U can be constructed as a quotient of the tensor algebra F(J)/R, where R is an ideal generated by the elements:

$$\begin{array}{c} a_1 \otimes a_2 \otimes a_3 + a_3 \otimes a_2 \otimes a_1 + (a_1 \cdot a_3) \cdot a_2 \\ -a_1 \otimes a_2 \cdot a_3 - a_2 \otimes a_1 \cdot a_3 - a_3 \otimes a_1 \cdot a_2, \\ a_1 \otimes a_2 \cdot a_3 + a_2 \otimes a_1 \cdot a_3 + a_3 \otimes a_1 \cdot a_2 \\ -a_2 \cdot a_3 \otimes a_1 - a_1 \cdot a_3 \otimes a_2 - a_1 \cdot a_2 \otimes a_3, \quad a_1, a_2, a_3 \in J. \end{array}$$

We denote by *J*-mod the category of finite dimensional *J*-bimodules.

æ

Let *e* be an identity element in *J* then *M* is called **unital** if $\rho(e)m = m$ for all $m \in M$, denote by J-mod₁ $\subset J$ -mod, one can introduce the corresponding enveloping algebra $U_1(J)$.

Let $\rho: a \rightarrow \rho_a$ is a representation of J corresponding to M then

 $\rho_e(\rho_e-1)(2\rho_e-1)=0$

gives the Peirce decomposition for M

$$M=M_0\oplus M_{\frac{1}{2}}\oplus M_1,$$

where $M_i = \{m_i | \rho_e m_i = im_i\}.$

In particular $\rho: J \to \operatorname{End}_{\mathbf{k}} M_1$, is a unital representation, and $\rho: J \to \operatorname{End}_{\mathbf{k}} M_{\frac{1}{2}}$ is one-sided representation of J, while $\rho: J \to \operatorname{End}_{\mathbf{k}} M_0$ is one-dimensional trivial representation.

Therefore to describe J-mod it suffices to describe S(J)-mod and $U_1(J)$ -mod.

Let *e* be an identity element in *J* then *M* is called **unital** if $\rho(e)m = m$ for all $m \in M$, denote by J-mod₁ $\subset J$ -mod, one can introduce the corresponding enveloping algebra $U_1(J)$.

Let $\rho: a \to \rho_a$ is a representation of J corresponding to M then

$$\rho_{\rm e}(\rho_{\rm e}-1)(2\rho_{\rm e}-1)=0$$

gives the Peirce decomposition for \boldsymbol{M}

$$M=M_0\oplus M_{\frac{1}{2}}\oplus M_1,$$

where $M_i = \{m_i | \rho_e m_i = im_i\}.$

In particular $\rho: J \to \operatorname{End}_{\mathbf{k}} M_1$, is a unital representation, and $\rho: J \to \operatorname{End}_{\mathbf{k}} M_{\frac{1}{2}}$ is one-sided representation of J, while $\rho: J \to \operatorname{End}_{\mathbf{k}} M_0$ is one-dimensional trivial representation.

Therefore to describe J-mod it suffices to describe S(J)-mod and $U_1(J)$ -mod.

Let *e* be an identity element in *J* then *M* is called **unital** if $\rho(e)m = m$ for all $m \in M$, denote by J-mod₁ $\subset J$ -mod, one can introduce the corresponding enveloping algebra $U_1(J)$.

Let $\rho: a \to \rho_a$ is a representation of J corresponding to M then

$$\rho_e(\rho_e-1)(2\rho_e-1)=0$$

gives the Peirce decomposition for \boldsymbol{M}

$$M=M_0\oplus M_{\frac{1}{2}}\oplus M_1,$$

where $M_i = \{m_i | \rho_e m_i = im_i\}.$

In particular $\rho: J \to \operatorname{End}_{\mathbf{k}} M_1$, is a unital representation, and $\rho: J \to \operatorname{End}_{\mathbf{k}} M_{\frac{1}{2}}$ is one-sided representation of J, while $\rho: J \to \operatorname{End}_{\mathbf{k}} M_0$ is one-dimensional trivial representation.

Therefore to describe J-mod it suffices to describe S(J)-mod and $U_1(J)$ -mod.

• k;

- J(V, f), f non-degenerate;
- $H_n(C)$, $n \ge 3$, (C, τ) composition algebra of dimension 1, 2, 4;
- \mathcal{A} , the Albert algebra.

In 1954, N. Jacobson described all irreducible modules for J simple:

J	S(J)	$U_1(J)$
$Sym_n(\mathbf{k})$	M _n	$M_{\underline{n(n+1)}} \oplus M_{\underline{n(n-1)}}$
$M_n(\mathbf{k})^+$	$M_n \oplus M_n$	$M_{n^2} \oplus \overline{M}_{\underline{n(n+1)}} \oplus \overline{M}_{\underline{n(n+1)}}$
		$\oplus M_{\underline{n(n-1)}} \oplus M_{\underline{n(n-1)}}$
$Symp_{2n}(k)$	M _{2n}	$M_{n(2n-1)} \oplus M_{n(2n+1)} *$
$J_n(V, f)$	M_{2^n}	$\oplus_s M_s$
dim $V = n$ is even		$s = \binom{n+1}{1}, \binom{n+1}{3}, \dots, \binom{n+1}{n+1}$
$J_n(V, f)$	$M_{2^{n-1}} + M_{2^{n-1}}$	$M_{\frac{1}{2}\binom{n+1}{\nu}} \oplus M_{\frac{1}{2}\binom{n+1}{\nu}} \oplus_{s} M_{s}$
$n = 2\nu - 1$		$s = \binom{n+1}{0}, \binom{n+1}{1}, \cdots, \binom{n+1}{\nu-1}$
\mathcal{A}		$M_{27}(\mathbf{k})$

- k;
- J(V, f), f non-degenerate;
- *H_n(C)*, *n* ≥ 3, (*C*, *τ*) composition algebra of dimension 1, 2, 4; *A*, the Albert algebra.

In 1954, N. Jacobson described all irreducible modules for J simple:

J	S(J)	$U_1(J)$
$Sym_n(\mathbf{k})$	M _n	$M_{\frac{n(n+1)}{2}} \oplus M_{\frac{n(n-1)}{2}}$
$M_n(\mathbf{k})^+$	$M_n \oplus M_n$	$M_{n^2} \oplus M_{\frac{n(n+1)}{2}} \oplus M_{\frac{n(n+1)}{2}}$
		$\oplus M_{\frac{n(n-1)}{2}} \oplus M_{\frac{n(n-1)}{2}}$
Symp _{2n} (k)	M _{2n}	$M_{n(2n-1)} \oplus M_{n(2n+1)} *$
$J_n(V, f)$	M_{2^n}	$\oplus_s M_s$
dim $V = n$ is even		$s = \binom{n+1}{1}, \binom{n+1}{3}, \dots, \binom{n+1}{n+1}$
$J_n(V, f)$	$M_{2^{n-1}} + M_{2^{n-1}}$	$M_{\frac{1}{2}\binom{n+1}{\nu}} \oplus M_{\frac{1}{2}\binom{n+1}{\nu}} \oplus_{s} M_{s}$
$n = 2\nu - 1$		$s = \binom{n+1}{0}, \binom{n+1}{1}, \cdots, \binom{n+1}{\nu-1}$
\mathcal{A}		$M_{27}(\mathbf{k})$

● k;

- J(V, f), f non-degenerate;
- $H_n(C)$, $n \ge 3$, (C, τ) composition algebra of dimension 1, 2, 4;
- \mathcal{A} , the Albert algebra.

In 1954, N. Jacobson described all irreducible modules for J simple:

J	S(J)	$U_1(J)$
Sym _n (k)	M _n	$M_{\underline{n(n+1)}} \oplus M_{\underline{n(n-1)}}$
$M_n(\mathbf{k})^+$	$M_n \oplus M_n$	$M_{n^2} \oplus \tilde{M}_{\underline{n(n+1)}} \oplus \tilde{M}_{\underline{n(n+1)}}$
		$\oplus M_{\frac{n(n-1)}{2}} \oplus M_{\frac{n(n-1)}{2}}$
$Symp_{2n}(k)$	M _{2n}	$M_{n(2n-1)} \oplus M_{n(2n+1)} *$
$J_n(V, f)$	M_{2^n}	$\oplus_s M_s$
dim $V = n$ is even		$s = \binom{n+1}{1}, \binom{n+1}{3}, \dots, \binom{n+1}{n+1}$
$J_n(V, f)$	$M_{2^{n-1}} + M_{2^{n-1}}$	$M_{\frac{1}{2}\binom{n+1}{\nu}} \oplus M_{\frac{1}{2}\binom{n+1}{\nu}} \oplus_{s} M_{s}$
$n = 2\nu - 1$		$s = \binom{n+1}{0}, \binom{n+1}{1}, \cdots, \binom{n+1}{\nu-1}$
\mathcal{A}		$M_{27}(\mathbf{k})$

I.Kashuba Representation type of Jordan algebras

● k;

- J(V, f), f non-degenerate;
- $H_n(C)$, $n \ge 3$, (C, τ) composition algebra of dimension 1, 2, 4;
- \mathcal{A} , the Albert algebra.

In 1954, N. Jacobson described all irreducible modules for J simple:

1	S(J)	$U_1(J)$
Sym _n (k)	M_n	$M_{\underline{n(n+1)}} \oplus M_{\underline{n(n-1)}}$
$\Lambda A(\mathbf{k}) \pm$	$M \oplus M$	2 2
$M_n(\mathbf{k})^+$	$M_n \oplus M_n$	$M_{n^2} \oplus M_{\underline{n(n+1)}} \oplus M_{\underline{n(n+1)}}$
		$\oplus M_{\underline{n(n-1)}}^2 \oplus M_{\underline{n(n-1)}}^2$
$Symp_{2n}(k)$	M _{2n}	$M_{n(2n-1)} \oplus M_{n(2n+1)} *$
$J_n(V, f)$	M_{2^n}	$\oplus_s M_s$
dim $V = n$ is even		$s = \binom{n+1}{1}, \binom{n+1}{3}, \dots, \binom{n+1}{n+1}$
$J_n(V, f)$	$M_{2^{n-1}} + M_{2^{n-1}}$	$M_{\frac{1}{2}\binom{n+1}{2}} \oplus M_{\frac{1}{2}\binom{n+1}{2}} \oplus_s M_s$
$n = 2\nu - 1$		
\mathcal{A}		$M_{27}(\mathbf{k})$

• k;

- J(V, f), f non-degenerate;
- $H_n(C)$, $n \ge 3$, (C, τ) composition algebra of dimension 1, 2, 4;
- \mathcal{A} , the Albert algebra.

In 1954, N. Jacobson described all irreducible modules for J simple:

		I
J	S(J)	$U_1(J)$
$Sym_n(\mathbf{k})$	M _n	$M_{\underline{n(n+1)}} \oplus M_{\underline{n(n-1)}}$
$M_n(k)^+$	$M_n \oplus M_n$	$M_{n^2} \oplus \overline{M}_{\underline{n(n+1)}} \oplus \overline{M}_{\underline{n(n+1)}}$
		$\oplus M_{\frac{n(n-1)}{2}} \oplus M_{\frac{n(n-1)}{2}}$
$Symp_{2n}(k)$	M _{2n}	$M_{n(2n-1)} \oplus M_{n(2n+1)} *$
$J_n(V, f)$	M_{2^n}	$\oplus_s M_s$
dim $V = n$ is even		$s = \binom{n+1}{1}, \binom{n+1}{3}, \dots, \binom{n+1}{n+1}$
$J_n(V,f)$	$M_{2^{n-1}} + M_{2^{n-1}}$	$M_{\frac{1}{2}\binom{n+1}{\nu}} \oplus M_{\frac{1}{2}\binom{n+1}{\nu}} \oplus_{s} M_{s}$
$n=2\nu-1$		$s = \binom{n+1}{0}, \binom{n+1}{1}, \dots, \binom{n+1}{\nu-1}$
$\overline{\mathcal{A}}$	0	<i>M</i> ₂₇ (k)

Let S_1 and S_2 be in J-mod $_{\frac{1}{2}}$ then we may form the Kronecker sum of two given one-sided modules $S = S_1 \otimes S_2 \in J$ -mod $_1$ by setting

$$a(s_1 \otimes s_2) = as_1 \otimes s_2 + s_1 \otimes as_2.$$

Let $J_s = J_1 \oplus J_2 \oplus \cdots \oplus J_r$ be a semi-simple Jordan algebra and $M \in J_s$ -mod₁, M is indecomposable, then we have:

- ① *M* is a unital J_i -module;
- *M* is a Kronecker sum of two irreducible one-sided modules one of each is in *J_i*-mod_{1/2} and the other in *J_j*-mod_{1/2}, 1 ≤ *i* ≠ *j* ≤ *r*. There were no general results on representations of Jordan algebras after Jacobson.

Let S_1 and S_2 be in J-mod $\frac{1}{2}$ then we may form the Kronecker sum of two given one-sided modules $S = S_1 \otimes S_2 \in J$ -mod $_1$ by setting

$$a(s_1 \otimes s_2) = as_1 \otimes s_2 + s_1 \otimes as_2.$$

Let $J_s = J_1 \oplus J_2 \oplus \cdots \oplus J_r$ be a semi-simple Jordan algebra and $M \in J_s$ -mod₁, M is indecomposable, then we have:

- *M* is a unital J_i -module;
- Ø M is a Kronecker sum of two irreducible one-sided modules one of each is in J_i-mod_{1/2} and the other in J_j-mod_{1/2}, 1 ≤ i ≠ j ≤ r.

There were no general results on representations of Jordan algebras after Jacobson.

Let S_1 and S_2 be in J-mod $\frac{1}{2}$ then we may form the Kronecker sum of two given one-sided modules $S = S_1 \otimes S_2 \in J$ -mod $_1$ by setting

$$a(s_1 \otimes s_2) = as_1 \otimes s_2 + s_1 \otimes as_2.$$

Let $J_s = J_1 \oplus J_2 \oplus \cdots \oplus J_r$ be a semi-simple Jordan algebra and $M \in J_s$ -mod₁, M is indecomposable, then we have:

- *M* is a unital J_i -module;
- *M* is a Kronecker sum of two irreducible one-sided modules one of each is in *J_i*-mod¹/₂ and the other in *J_j*-mod¹/₂, 1 ≤ *i* ≠ *j* ≤ *r*. There were no general results on representations of Jordan algebras after Jacobson.

Let S_1 and S_2 be in J-mod $_{\frac{1}{2}}$ then we may form the Kronecker sum of two given one-sided modules $S = S_1 \otimes S_2 \in J$ -mod $_1$ by setting

$$a(s_1 \otimes s_2) = as_1 \otimes s_2 + s_1 \otimes as_2.$$

Let $J_s = J_1 \oplus J_2 \oplus \cdots \oplus J_r$ be a semi-simple Jordan algebra and $M \in J_s$ -mod₁, M is indecomposable, then we have:

- *M* is a unital J_i -module;
- *M* is a Kronecker sum of two irreducible one-sided modules one of each is in *J_i*-mod¹/₂ and the other in *J_j*-mod¹/₂, 1 ≤ *i* ≠ *j* ≤ *r*. There were no general results on representations of Jordan algebras after Jacobson.

Let **k** be algebraically closed field and A be an associative finite dimensional k-algebra. Then A is of

- a finite representation type if there are finitely many isomorphism classes of finitely generated, indecomposable left *A*-modules.
- a tame representation type if isomorphism classes of finitely generated, indecomposable left *A*-modules form in each dimension finitely many one-parameter families.
- or a wild representation type

 $A \iff$ quiver with relations (Q(A), R) such that

 $Q - mod \sim_{Mor} A - mod$

One can talk about **one-sided representation type** of $J (\equiv type of S(J))$ and **unital representation type** of $J (\equiv type of U_1(J))$.

・ 同 ト ・ ヨ ト ・ ヨ ト ……

Let **k** be algebraically closed field and A be an associative finite dimensional k-algebra. Then A is of

- a finite representation type if there are finitely many isomorphism classes of finitely generated, indecomposable left *A*-modules.
- a tame representation type if isomorphism classes of finitely generated, indecomposable left *A*-modules form in each dimension finitely many one-parameter families.
- or a wild representation type

 $A \iff$ quiver with relations (Q(A), R) such that

$$Q - mod \sim_{Mor} A - mod$$

One can talk about **one-sided representation type** of $J (\equiv type of S(J))$ and **unital representation type** of $J (\equiv type of U_1(J))$.

Let **k** be algebraically closed field and A be an associative finite dimensional **k**-algebra. Then A is of

- a finite representation type if there are finitely many isomorphism classes of finitely generated, indecomposable left *A*-modules.
- a tame representation type if isomorphism classes of finitely generated, indecomposable left *A*-modules form in each dimension finitely many one-parameter families.
- or a wild representation type

 $A \iff$ quiver with relations (Q(A), R) such that

$$Q - mod \sim_{Mor} A - mod$$

One can talk about one-sided representation type of $J \ (\equiv \text{type} \ \text{of } S(J))$ and unital representation type of $J \ (\equiv \text{type of } U_1(J))$.

$$J = J_s + \operatorname{Rad} J, \qquad \operatorname{Rad}^2 J = 0$$

Let Q be a quiver, the **quiver double** D(Q) of Q is defined as follows:

$$D(Q_0) = \{X^+, X^- \mid X \in Q_0\}$$

 $D(Q_1) = \{\tilde{a} : s(a)^- \to e(a)^+ \mid a \in Q_1\}.$

Theorem (Gabriel)

 $J = J_s + \operatorname{Rad} J, \qquad \operatorname{Rad}^2 J = 0$

Let Q be a quiver, the **quiver double** D(Q) of Q is defined as follows:

$$D(Q_0) = \{X^+, X^- \mid X \in Q_0\}$$
$$D(Q_1) = \{\tilde{a} : s(a)^- \to e(a)^+ \mid a \in Q_1\}$$

Theorem (Gabriel)

$$J = J_s + \operatorname{Rad} J, \qquad \operatorname{Rad}^2 J = 0$$

Let Q be a quiver, the **quiver double** D(Q) of Q is defined as follows:

$$egin{aligned} D(Q_0) &= \{X^+, X^- \, | \, X \in Q_0\} \ D(Q_1) &= \{ ilde{a} : s(a)^- o e(a)^+ \, | \, a \in Q_1\}. \end{aligned}$$

Theorem (Gabriel)

$$J = J_s + \operatorname{Rad} J, \qquad \operatorname{Rad}^2 J = 0$$

Let Q be a quiver, the **quiver double** D(Q) of Q is defined as follows:

$$egin{aligned} D(Q_0) &= \{X^+, X^- \, | \, X \in Q_0\} \ D(Q_1) &= \{ \widetilde{a} : s(a)^- o e(a)^+ \, | \, a \in Q_1 \}. \end{aligned}$$

Theorem (Gabriel)

Have to deal with four cases:

- describe matrix Jordan algebras which are tame/finite with respect to their one-sided representation type: K., Ovsienko S., Shestakov I., Representation type of Jordan algebras, Advances in Math., 2011.
- describe Jordan algebras of Clifford type which are tame/finite with respect to their one-sided representation type;
- Idescribe matrix Jordan algebras which are tame/finite with respect to their unital representation type;
- describe Jordan algebras of Clifford type which are tame/finite with respect to their unital representation type;

Last three items with Vera Serganova using the **Tits-Kantor-Koecher construction**.

→ < Ξ → <</p>

Have to deal with four cases:

- describe matrix Jordan algebras which are tame/finite with respect to their one-sided representation type: K., Ovsienko S., Shestakov I., Representation type of Jordan algebras, Advances in Math., 2011.
- describe Jordan algebras of Clifford type which are tame/finite with respect to their one-sided representation type;
- describe matrix Jordan algebras which are tame/finite with respect to their unital representation type;
- describe Jordan algebras of Clifford type which are tame/finite with respect to their unital representation type;

Last three items with Vera Serganova using the **Tits-Kantor-Koecher construction**.

Have to deal with four cases:

- describe matrix Jordan algebras which are tame/finite with respect to their one-sided representation type: K., Ovsienko S., Shestakov I., Representation type of Jordan algebras, Advances in Math., 2011.
- describe Jordan algebras of Clifford type which are tame/finite with respect to their one-sided representation type;
- describe matrix Jordan algebras which are tame/finite with respect to their unital representation type;
- describe Jordan algebras of Clifford type which are tame/finite with respect to their unital representation type;

Last three items with Vera Serganova using the **Tits-Kantor-Koecher construction**.

A short grading of \mathfrak{g} is a \mathbb{Z} -grading of the form $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$. Let P be the commutative bilinear map on J: $P(x, y) = x \cdot y$. We associate to J a Lie algebra with short grading

$$Lie(J) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1.$$

 $\mathsf{Put}\ \mathfrak{g}_{-1} = J,\ \mathfrak{g}_0 = \langle L_a, [L_a, L_b] | a, b \in J \rangle,\ \mathfrak{g}_1 = \langle P, [L_a, P] | a \in J \rangle$

• [L, x] = L(x) for $x \in \mathfrak{g}_{-1}$, $L \in \mathfrak{g}_0$;

• [B,x](y) = B(x,y) for $B \in \mathfrak{g}_1$ and $x, y \in \mathfrak{g}_{-1}$;

• [L, B](x, y) = L(B(x, y)) - B(L(x), y) + B(x, L(y)) for any $B \in \mathfrak{g}_1, L \in \mathfrak{g}_0$ and $x, y \in \mathfrak{g}_{-1}$.

Then $\mathfrak{g} = Lie(J)$ is Lie algebra and is called the **Tits-Kantor-Koecher (TKK) construction** for J.

A short grading of g is a \mathbb{Z} -grading of the form $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$. Let P be the commutative bilinear map on J: $P(x, y) = x \cdot y$. We associate to J a Lie algebra with short grading

$$Lie(J) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1.$$

Put $\mathfrak{g}_{-1} = J$, $\mathfrak{g}_0 = \langle L_a, [L_a, L_b] | a, b \in J \rangle$, $\mathfrak{g}_1 = \langle P, [L_a, P] | a \in J \rangle$ • [L, x] = L(x) for $x \in \mathfrak{g}_{-1}$, $L \in \mathfrak{g}_0$;

- [B,x](y) = B(x,y) for $B \in \mathfrak{g}_1$ and $x, y \in \mathfrak{g}_{-1}$;
- [L, B](x, y) = L(B(x, y)) B(L(x), y) + B(x, L(y)) for any $B \in \mathfrak{g}_1, L \in \mathfrak{g}_0$ and $x, y \in \mathfrak{g}_{-1}$.

Then $\mathfrak{g} = Lie(J)$ is Lie algebra and is called the **Tits-Kantor-Koecher (TKK) construction** for J.

A short subalgebra of \mathfrak{g} is an \mathfrak{sl}_2 subalgebra spanned by e, h, f such that the eigenspace decomposition of ad h defines a short grading on \mathfrak{g} .

For any J with identity e consider in Lie(J)

$$h_J = -L_e, \quad f_J = P, \text{ then } \alpha_J = \langle e, h_J, f_J \rangle$$

defines short subalgebra of Lie(J).

Let $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be the \mathbb{Z}_2 -graded Lie algebra, $p \in \mathfrak{g}_1$. For any $x, y \in \mathfrak{g}_{-1}$ set

 $x \cdot y = [[p, x], y]$

then $Jor(\mathfrak{g}) := (\mathfrak{g}_{-1}, \cdot)$ is a Jordan algebra.

A short subalgebra of \mathfrak{g} is an \mathfrak{sl}_2 subalgebra spanned by e, h, f such that the eigenspace decomposition of *ad h* defines a short grading on \mathfrak{g} .

For any J with identity e consider in Lie(J)

$$h_J = -L_e$$
, $f_J = P$, then $\alpha_J = \langle e, h_J, f_J \rangle$

defines short subalgebra of Lie(J).

Let $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be the \mathbb{Z}_2 -graded Lie algebra, $p \in \mathfrak{g}_1$. For any $x, y \in \mathfrak{g}_{-1}$ set

 $x \cdot y = [[p, x], y]$

then $Jor(\mathfrak{g}) := (\mathfrak{g}_{-1}, \cdot)$ is a Jordan algebra.

A short subalgebra of \mathfrak{g} is an \mathfrak{sl}_2 subalgebra spanned by e, h, f such that the eigenspace decomposition of *ad h* defines a short grading on \mathfrak{g} .

For any J with identity e consider in Lie(J)

$$h_J = -L_e$$
, $f_J = P$, then $\alpha_J = \langle e, h_J, f_J \rangle$

defines short subalgebra of Lie(J). Let $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be the \mathbb{Z}_2 -graded Lie algebra, $p \in \mathfrak{g}_1$. For any $x, y \in \mathfrak{g}_{-1}$ set

$$x \cdot y = [[p, x], y]$$

then $Jor(\mathfrak{g}) := (\mathfrak{g}_{-1}, \cdot)$ is a Jordan algebra.

Relations between J-mod and g = TKK(J)-modules?

We define two adjoint functors *Jor* and *Lie* between *J*-mod and g-modules admitting a short grading.

Not every *J*-module can be obtained from a g-module by application of *Jor*: one has to consider \hat{g} the universal central extension of g.

Let S (resp. $S_{\frac{1}{2}}$) be the category of $\hat{\mathfrak{g}}$ -modules M such that the action of α_J induces a short grading on M (resp. a grading of length 2, namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$).

To define Jor let $N \in S$. Then $N = N_1 \oplus N_0 \oplus N_{-1}$. We set $Jor(N) := N_{-1}$

$$x(m) = [f, x]m, \quad x \in J = \mathfrak{g}_{-1}, m \in N_{-1}.$$

Relations between *J*-mod and $\mathfrak{g} = TKK(J)$ -modules? We define two adjoint functors *Jor* and *Lie* between *J*-mod and \mathfrak{g} -modules admitting a short grading.

Not every J-module can be obtained from a g-module by application of Jor: one has to consider \hat{g} the universal central extension of g.

Let S (resp. $S_{\frac{1}{2}}$) be the category of $\hat{\mathfrak{g}}$ -modules M such that the action of α_J induces a short grading on M (resp. a grading of length 2, namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$).

To define Jor let $N \in S$. Then $N = N_1 \oplus N_0 \oplus N_{-1}$. We set $Jor(N) := N_{-1}$

$$x(m) = [f, x]m, \quad x \in J = \mathfrak{g}_{-1}, m \in N_{-1}.$$

Relations between *J*-mod and $\mathfrak{g} = TKK(J)$ -modules? We define two adjoint functors *Jor* and *Lie* between *J*-mod and g-modules admitting a short grading.

Not every J-module can be obtained from a g-module by application of Jor: one has to consider \hat{g} the universal central extension of g.

Let S (resp. $S_{\frac{1}{2}}$) be the category of $\hat{\mathfrak{g}}$ -modules M such that the action of α_J induces a short grading on M (resp. a grading of length 2, namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$).

To define Jor let $N \in S$. Then $N = N_1 \oplus N_0 \oplus N_{-1}$. We set $Jor(N) := N_{-1}$

$$x(m) = [f, x]m, \quad x \in J = \mathfrak{g}_{-1}, m \in N_{-1}.$$

Relations between *J*-mod and $\mathfrak{g} = TKK(J)$ -modules? We define two adjoint functors *Jor* and *Lie* between *J*-mod and g-modules admitting a short grading.

Not every J-module can be obtained from a g-module by application of Jor: one has to consider \hat{g} the universal central extension of g.

Let S (resp. $S_{\frac{1}{2}}$) be the category of $\hat{\mathfrak{g}}$ -modules M such that the action of α_J induces a short grading on M (resp. a grading of length 2, namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$).

To define Jor let $N \in S$. Then $N = N_1 \oplus N_0 \oplus N_{-1}$. We set $Jor(N) := N_{-1}$

$$x(m) = [f, x]m, \quad x \in J = \mathfrak{g}_{-1}, m \in N_{-1}.$$

Relations between *J*-mod and $\mathfrak{g} = TKK(J)$ -modules? We define two adjoint functors *Jor* and *Lie* between *J*-mod and g-modules admitting a short grading.

Not every J-module can be obtained from a g-module by application of Jor: one has to consider \hat{g} the universal central extension of g.

Let S (resp. $S_{\frac{1}{2}}$) be the category of $\hat{\mathfrak{g}}$ -modules M such that the action of α_J induces a short grading on M (resp. a grading of length 2, namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$).

To define Jor let $N \in S$. Then $N = N_1 \oplus N_0 \oplus N_{-1}$. We set $Jor(N) := N_{-1}$

$$x(m) = [f, x]m, \quad x \in J = \mathfrak{g}_{-1}, m \in N_{-1}.$$

Our next step is to define $Lie : J - mod_1 \rightarrow S$.

Let $M \in J - mod_1$. Let $\mathcal{A} = Lie(\mathcal{J} \oplus M)$. Then we have an exact sequence

$$0 \to N \to \mathcal{A} \xrightarrow{\pi} \mathfrak{g} \to 0, \tag{4}$$

where N is an abelian Lie algebra and $N_{-1} = M$. N is a \hat{g} -module, thus $N_{-1} = M$ is \hat{g}_0 -module.

Let $\mathcal{P} = \hat{\mathfrak{g}}_0 \oplus \mathfrak{g}_{-1}$ and we extend the above $\hat{\mathfrak{g}}_0$ -module structure on M to a \mathcal{P} -module structure by setting $\mathfrak{g}_{-1}M = 0$. Next

$$\Gamma(M) = U(\hat{\mathfrak{g}}) \otimes_{U(\mathcal{P})} M.$$

We define Lie(M) to be the maximal quotient in $\Gamma(M)$ which belongs to S.

Our next step is to define $Lie : J - mod_1 \rightarrow S$.

Let $M \in J - mod_1$. Let $\mathcal{A} = Lie(\mathcal{J} \oplus M)$. Then we have an exact sequence

$$0 \to N \to \mathcal{A} \xrightarrow{\pi} \mathfrak{g} \to 0, \tag{4}$$

where N is an abelian Lie algebra and $N_{-1} = M$. N is a \hat{g} -module, thus $N_{-1} = M$ is \hat{g}_0 -module.

Let $\mathcal{P} = \hat{\mathfrak{g}}_0 \oplus \mathfrak{g}_{-1}$ and we extend the above $\hat{\mathfrak{g}}_0$ -module structure on M to a \mathcal{P} -module structure by setting $\mathfrak{g}_{-1}M = 0$. Next

$$\Gamma(M) = U(\hat{\mathfrak{g}}) \otimes_{U(\mathcal{P})} M.$$

We define Lie(M) to be the maximal quotient in $\Gamma(M)$ which belongs to S.

Our next step is to define $Lie : J - mod_1 \rightarrow S$.

Let $M \in J - mod_1$. Let $\mathcal{A} = Lie(\mathcal{J} \oplus M)$. Then we have an exact sequence

$$0 \to N \to \mathcal{A} \xrightarrow{\pi} \mathfrak{g} \to 0, \tag{4}$$

where N is an abelian Lie algebra and $N_{-1} = M$. N is a \hat{g} -module, thus $N_{-1} = M$ is \hat{g}_0 -module.

Let $\mathcal{P} = \hat{\mathfrak{g}}_0 \oplus \mathfrak{g}_{-1}$ and we extend the above $\hat{\mathfrak{g}}_0$ -module structure on M to a \mathcal{P} -module structure by setting $\mathfrak{g}_{-1}M = 0$. Next

$$\Gamma(M) = U(\hat{\mathfrak{g}}) \otimes_{U(\mathcal{P})} M.$$

We define Lie(M) to be the maximal quotient in $\Gamma(M)$ which belongs to S.

- Jor \circ Lie is isomorphic to the identity functor in $J mod_1$.
- Let $N \in S$ and $\hat{\mathfrak{g}}N = N$, then the canonical map $Lie(Jor(N)) \rightarrow N$ is surjective.
- Let N ∈ S and N^ŷ := {x ∈ N | ĝx = x} = 0, then the canonical map N → Lie(Jor(N)) is injective.
- If $M \to L \to 0$ is exact in $J mod_1$, then $Lie(M) \to Lie(L) \to 0$ is exact in S.

The splitting $J - mod_1 \oplus J - mod_0$ can not be lifted to the Lie algebra \hat{g} , since some modules can have non-trivial extensions with trivial modules, thus left and right adjoint of the functor *Jor* are not isomorphic and the categories S and $J - mod_1$ are not equivalent. Still they are close enough and one can describe projective modules, quivers and relations of $J - mod_1$ in terms of S.

- Jor \circ Lie is isomorphic to the identity functor in $J mod_1$.
- Let $N \in S$ and $\hat{\mathfrak{g}}N = N$, then the canonical map $Lie(Jor(N)) \rightarrow N$ is surjective.
- Let N ∈ S and N^ŷ := {x ∈ N | ĝx = x} = 0, then the canonical map N → Lie(Jor(N)) is injective.
- If $M \to L \to 0$ is exact in $J mod_1$, then $Lie(M) \to Lie(L) \to 0$ is exact in S.

The splitting $J - mod_1 \oplus J - mod_0$ can not be lifted to the Lie algebra $\hat{\mathfrak{g}}$, since some modules can have non-trivial extensions with trivial modules, thus left and right adjoint of the functor *Jor* are not isomorphic and the categories S and $J - mod_1$ are not equivalent. Still they are close enough and one can describe projective modules, quivers and relations of $J - mod_1$ in terms of S.

J	g	$\mathcal{S}_{\frac{1}{2}}$	S
$Sym_n(\mathbf{k})$	\mathfrak{sp}_{2n}	V	ad, $\Lambda^2 V$
$M_n(\mathbf{k})^+$	sl _{2n}	V, V*	ad, $S^{2}(V)$, $S^{2}(V^{*})$, $\Lambda^{2}(V)$, $\Lambda^{2}(V^{*})$
$Symp_{2n}(\mathbf{k})$	\$04n	V	ad, $S^2(V)$
$J_n(E,f)$	\mathfrak{so}_{n+3}	Г	$\Lambda^i(V)$, $i=1,\ldots, u+1$
$n=2\nu$		spinor	
$J_n(E,f)$	\mathfrak{so}_{n+3}	Γ+, Γ-	$\Lambda^i(V)$, $i=1,\ldots, u$
$n = 2\nu - 1$		spinor	$\Lambda^{ u+1}(V)^{\pm}$
\mathcal{A}	E ₇		ad

æ

Image: A image: A

Let C be an abelian category with finitely many simple modules such that every object has finite length and every simple object has a projective cover.

Then C is equivalent to the category of finite-dimensional A-modules. If L_1, \ldots, L_r is the set of all up to isomorphism simple objects in C and P_1, \ldots, P_r are their projective covers, then A is a pointed algebra which is usually realized as the path algebra of a certain quiver Q with relations.

The vertices

$$Q_0 = \{ \text{simple modules } L_1, \ldots, L_r \}$$

 $Q_1 = \{ \# \text{arrows from vertex } L_i \text{ to vertex } L_j \text{ is } \dim \text{Ext}^1(L_j, L_i) \}$

It is now clear how to describe the quiver Q.

Lemma

Let $\mathfrak{g} = \mathfrak{g}_s + \mathfrak{r}$ be the Levi decomposition of \mathfrak{g} . Let L and L' be two simple \mathfrak{g}_s -modules then dim $\operatorname{Ext}^1(L, L')$ equals the multiplicity of L' in $L \otimes \mathfrak{r}$.

Example

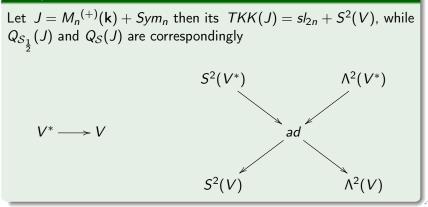
Let $J = M_n^{(+)}(\mathbf{k}) + Sym_n$ then its $TKK(J) = sl_{2n} + S^2(V)$, while

It is now clear how to describe the quiver Q.

Lemma

Let $\mathfrak{g} = \mathfrak{g}_s + \mathfrak{r}$ be the Levi decomposition of \mathfrak{g} . Let L and L' be two simple \mathfrak{g}_s -modules then dim $\mathsf{Ext}^1(L,L')$ equals the multiplicity of L' in $L \otimes \mathfrak{r}$.

Example



Example

$$\mathfrak{g} = \mathfrak{so}_{2m+1} \oplus V$$
, $m \geq 3$

$$tr \underbrace{\overset{\gamma_0}{\underset{\delta_0}{\overset{\sim}{\sim}}} V \underbrace{\overset{\gamma_1}{\underset{\delta_1}{\overset{\sim}{\sim}}} \Lambda^2 V \underbrace{\overset{\gamma_2}{\underset{\delta_2}{\overset{\sim}{\sim}}} \dots \underbrace{\overset{\gamma_{m-1}}{\underset{\delta_{m-1}}{\overset{\sim}{\sim}}} \Lambda^m V}_{\overbrace{\delta_{m-1}}{\overset{\gamma_m}{\overset{\sim}{\sim}}} \Lambda^m V \underbrace{\overset{\gamma_m}{\underset{\delta_2}{\overset{\sim}{\sim}}} \dots$$

with the relations

$$\begin{aligned} \gamma_{r-1}\gamma_r &= \delta_r \delta_{r-1} = 0, \\ \gamma_{r-1}\delta_{r-1} &= \delta_r \gamma_r, \\ \gamma_{m-1}\delta_{m-1} &= \gamma_m^2, \\ \text{for } r &= 1, \dots, m-1. \end{aligned}$$

・ロト ・聞 と ・ ほ と ・ ほ と …

æ