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Jordan algebras arose from the search of "exceptional" setting for
quantum mechanics.
The "Copenhagen model":

the physical observables are Hermitian matrices (or operators
on Hilbert space);
the basic operations are multiplication by λ ∈ C, addition,
multiplication of matrices, adjoint operator.

Most of matrix operations are not observable!
In 1932 the German physicist Pascual Jordan proposed a program
to discover "a new algebraic setting for quantum mechanics“,
Jordan has chosen a new observable operation called
quasi-multiplication

x · y :=
1
2

(xy + yx).

Next step to decide empirically what axioms or laws this operation
obey.
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Definition
A Jordan algebra J consists of a real vector space equipped with a
bilinear product x · y satisfying the commutative law and the
Jordan identity

x · y = y · x ,
(x2 · y) · x = x2 · (y · x), ∀x , y ∈ J. (1)

A Jordan algebra is formally real if

x2
1 + · · ·+ x2

n = 0 =⇒ x1 = · · · = xn = 0.

Any associative algebra A over R gives rise to a Jordan algebra A+

under quasi-multiplication: the product x · y is clearly commutative
and satisfies the Jordan identity.

A Jordan algebra is called special if it can be realized as a Jordan
subalgebra of some A+. For example, if A has an involution ? then
the subspace of hermitian elements H(A, ?) = {x? = x | x ∈ A}
forms a special Jordan algebra.
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These hermitian algebras are the archetypes of all Jordan algebras.
It is easy to check that the hermitian matrices over R, C and the
quaternions form special Jordan algebras that are formally real.

One obtains another special formally real Jordan algebra (called
spin factor JSpinn or Jordan algebra of Clifford type) on the
space R1⊕ Rn, when n ≥ 2, by making 1 acts as a unit and
defining v · w = 〈v ,w〉1, where v ,w ∈ Rn and 〈 , 〉 is an inner
product in Rn.

What he physicists were looking for were Jordan algebras where
there is no invisible structure xy governing the visible structure
x · y . A Jordan algebra J is called exceptional if it is not special,
i.e. does not result from quasi-multiplication.

Jordan hoped that by studying finite-dimendional Jordan algebras
he could find families of simple exceptional algebras En,
parametrized by natural numbers n, letting n to infinity would
provide a suitable infinite-dimensional home for quantum
mechanics.
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In 1934 Jordan, John von Neumann and Eugene Wigner showed
that every finite-dimensional formally real Jordan algebra can be
written as a direct sum of so-called simple ones, which are four
infinite families, together with one exceptional case:

The Jordan algebra of n× n self-adjoint real matrices, complex
matrices and quaternionic matrices;
The Jordan algebra of Clifford type corresponding to usual
inner product in Rn;
The Jordan algebra H3(O) of 3× 3 self-adjoint octonionic
matrices, (an exceptional Jordan algebra called the Albert
algebra, since A.Albert showed that it is indeed exceptional).

There was only one exceptional algebra in the list!!! Hn(O), n > 3
is not Jordan, while H2(O) ' JSpin9. The lone H3(O) was too
isolated to give a clue as to possible existence of inf-dimensional
exceptional algebras.
Half a centure later Efin Zelmanov quashed all remaining hopes
showing that even in infinite dimensions there are no simple
exceptional Jordan algebras other than Albert algebras.
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Let k = k̄ , chark = 0. A Jordan algebra is a commutative
k-algebra (J, ·) satisfying Jordan identity

(x2 · y) · x = x2 · (y · x) x , y ∈ J. (2)

Example
1 Denote Hn(A) = H(Mn(A), j̄) ⊂ Mn(A)+.
2 Let f be a symmetric bilinear form on E , then

J(E , f ) = E ⊕ k with respect to

(α + x) · (β + y) = αβ + f (x , y)1 + (αy + βx),

α, β ∈ k, x , y ∈ E is a Jordan algebra of Clifford type.
3 Let O be an Caley algebra over k, then A = H3(O) is called

the Albert algebra
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Suppose M is a k-vector space equipped with two bilinear mappings

l , r : J ⊗M → M l : (a,m)→ am , r : (a,m)→ ma,

and define a product on Ω = J ⊕M

(a1 + m1) ◦ (a2 + m2) = a1 · a2 + a1m2 + m1a2.

M is a Jordan bimodule for J ⇔ Ω = (Ω, ◦) is a Jordan algebra.
Equivalently a linear map ρ : J → EndkM, ρ(a)m = am defines a
(bi)representation if for all a, b ∈ J

[ρ(a), ρ(a · a)] = 0,

2ρ(a)ρ(b)ρ(a) + ρ((a · a) · b) = 2ρ(a)ρ(a · b) + ρ(b)ρ(a · a).
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For any J the category of k-finite dimensional J-bimodules is
equivalent to the category of finite dimensional left U-modules for
some associative algebra called the universal multiplicative
enveloping algebra U = U(J).
The algebra U can be constructed as a quotient of the tensor
algebra F (J)/R , where R is an ideal generated by the elements:

a1 ⊗ a2 ⊗ a3 + a3 ⊗ a2 ⊗ a1 + (a1 · a3) · a2
−a1 ⊗ a2 · a3 − a2 ⊗ a1 · a3 − a3 ⊗ a1 · a2,

a1 ⊗ a2 · a3 + a2 ⊗ a1 · a3 + a3 ⊗ a1 · a2
−a2 · a3 ⊗ a1 − a1 · a3 ⊗ a2 − a1 · a2 ⊗ a3, a1, a2, a3 ∈ J.

We denote by J-mod the category of finite dimensional
J-bimodules.
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Jordan algebras versus Lie algebras

1 Let A be an associative algebra we construct
A+ = (A, 1

2(ab + ba)), A− = (A, ab − ba) .
2 For ∀ g dimkU(g) =∞ while dimkJ <∞ ⇒ dimkU(J) <∞.
3 For any Lie algebra g its universal enveloping algebra

U(g) = F (g)/〈ab − ba− [a, b]〉 and by PBW thm

g ⊂ U(g)− e g-mod ' U(g)-mod.

4 S(J) = F (J)/〈ab + ba− 2a · b〉 is called universal
associative enveloping of J and

J ⊂ S(J)+ ⇐⇒ J is special, J-mod 1
2
' S(J)-mod.

Let σ : J → EndkM, satisfying for all a, b ∈ J

σ(a · b) =
1
2

(σ(a)σ(b) + σ(b)σ(a)). (3)

This gives the structure of J-bimodule on M via
1
2σ : J → EndkM, and is called one-sided (bi)modules.
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Let e be an identity element in J then M is called unital if
ρ(e)m = m for all m ∈ M, denote by J-mod1 ⊂ J-mod, one can
introduce the corresponding enveloping algebra U1(J).

Let ρ : a→ ρa is a representation of J corresponding to M then

ρe(ρe − 1)(2ρe − 1) = 0

gives the Peirce decomposition for M

M = M0 ⊕M 1
2
⊕M1,

where Mi = {mi | ρemi = imi}.

In particular ρ : J → EndkM1, is a unital representation, and
ρ : J → EndkM 1

2
is one-sided representation of J, while

ρ : J → EndkM0 is one-dimensional trivial representation.

Therefore to describe J-mod it suffices to describe S(J)-mod and
U1(J)-mod.
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We start we the Albert classification of simple finite-dimensional:
k;
J(V , f ), f non-degenerate;
Hn(C ), n ≥ 3, (C , τ) composition algebra of dimension 1, 2, 4;
A, the Albert algebra.

In 1954, N. Jacobson described all irreducible modules for J simple:
J S(J) U1(J)

Symn(k) Mn M n(n+1)
2
⊕M n(n−1)

2

Mn(k)+ Mn ⊕Mn Mn2 ⊕M n(n+1)
2
⊕M n(n+1)

2
⊕M n(n−1)

2
⊕M n(n−1)

2

Symp2n(k) M2n Mn(2n−1) ⊕Mn(2n+1)
∗

Jn(V , f ) M2n ⊕sMs

dimV = n is even s =
(n+1

1

)
,
(n+1

3

)
, . . . ,

(n+1
n+1

)
Jn(V , f ) M2n−1 + M2n−1 M 1

2(n+1
ν ) ⊕M 1

2(n+1
ν ) ⊕s Ms

n = 2ν − 1 s =
(n+1

0

)
,
(n+1

1

)
, . . . ,

(n+1
ν−1

)
A 0 M27(k)
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Let S1 and S2 be in J-mod 1
2
then we may form the Kronecker sum

of two given one-sided modules S = S1 ⊗ S2 ∈ J-mod1 by setting

a(s1 ⊗ s2) = as1 ⊗ s2 + s1 ⊗ as2.

Let Js = J1 ⊕ J2 ⊕ · · · ⊕ Jr be a semi-simple Jordan algebra and
M ∈ Js -mod1, M is indecomposable, then we have:

1 M is a unital Ji -module;
2 M is a Kronecker sum of two irreducible one-sided modules one

of each is in Ji -mod 1
2
and the other in Jj -mod 1

2
, 1 ≤ i 6= j ≤ r .

There were no general results on representations of Jordan algebras
after Jacobson.

Aim: Describe Jordan algebras for which one can classify all
finite-dimensional representations of J ⇐⇒ all finite-dimensional
representations of U(J).
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Representation type of algebra

Let k be algebraically closed field and A be an associative finite
dimensional k-algebra. Then A is of

a finite representation type if there are finitely many
isomorphism classes of finitely generated, indecomposable left
A-modules.
a tame representation type if isomorphism classes of finitely
generated, indecomposable left A-modules form in each
dimension finitely many one-parameter families.
or a wild representation type

A⇐⇒ quiver with relations (Q(A),R) such that

Q −mod ∼Mor A−mod

One can talk about one-sided representation type of J (≡ type
of S(J)) and unital representation type of J (≡ type of U1(J)).
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Question: What class of algebras to choose?

Inspired by results of P. Gabriel for associative case:

J = Js + RadJ, Rad2J = 0

Let Q be a quiver, the quiver double D(Q) of Q is defined as
follows:

D(Q0) = {X+,X− |X ∈ Q0}
D(Q1) = {ã : s(a)− → e(a)+ | a ∈ Q1}.

Theorem (Gabriel)

Let A be a finite dimensional associative algebra over algebraically
closed field, such that Rad2A = 0, Q its quiver. Then A is of finite
(tame) representation type if and only if D(Q) is a disjoint union of
simply-laced Dynkin diagrams (extended Dynkin diagrams).
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Have to deal with four cases:
1 describe matrix Jordan algebras which are tame/finite with

respect to their one-sided representation type:
K., Ovsienko S., Shestakov I., Representation type of Jordan
algebras, Advances in Math., 2011.

2 describe Jordan algebras of Clifford type which are
tame/finite with respect to their one-sided representation
type;

3 describe matrix Jordan algebras which are tame/finite with
respect to their unital representation type;

4 describe Jordan algebras of Clifford type which are
tame/finite with respect to their unital representation type;

Last three items with Vera Serganova using
the Tits-Kantor-Koecher construction.
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The Tits-Kantor-Koecher construction

A short grading of g is a Z-grading of the form g = g−1⊕ g0⊕ g1.
Let P be the commutative bilinear map on J: P(x , y) = x · y .
We associate to J a Lie algebra with short grading

Lie(J) = g−1 ⊕ g0 ⊕ g1.

Put g−1 = J, g0 = 〈La, [La, Lb]|a, b ∈ J〉, g1 = 〈P, [La,P]|a ∈ J〉
[L, x ] = L(x) for x ∈ g−1, L ∈ g0;
[B, x ](y) = B(x , y) for B ∈ g1 and x , y ∈ g−1;
[L,B](x , y) = L(B(x , y))− B(L(x), y) + B(x , L(y)) for any
B ∈ g1, L ∈ g0 and x , y ∈ g−1.

Then g = Lie(J) is Lie algebra and is called the
Tits-Kantor-Koecher (TKK) construction for J.
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A short subalgebra of g is an sl2 subalgebra spanned by e, h, f
such that the eigenspace decomposition of ad h defines a short
grading on g.
For any J with identity e consider in Lie(J)

hJ = −Le , fJ = P, then αJ = 〈e, hJ , fJ〉

defines short subalgebra of Lie(J).
Let g = g−1 ⊕ g0 ⊕ g1 be the Z2-graded Lie algebra, p ∈ g1. For
any x , y ∈ g−1 set

x · y = [[p, x ], y ]

then Jor(g) := (g−1, ·) is a Jordan algebra.

I.Kashuba Representation type of Jordan algebras



A short subalgebra of g is an sl2 subalgebra spanned by e, h, f
such that the eigenspace decomposition of ad h defines a short
grading on g.
For any J with identity e consider in Lie(J)

hJ = −Le , fJ = P, then αJ = 〈e, hJ , fJ〉

defines short subalgebra of Lie(J).
Let g = g−1 ⊕ g0 ⊕ g1 be the Z2-graded Lie algebra, p ∈ g1. For
any x , y ∈ g−1 set

x · y = [[p, x ], y ]

then Jor(g) := (g−1, ·) is a Jordan algebra.

I.Kashuba Representation type of Jordan algebras



A short subalgebra of g is an sl2 subalgebra spanned by e, h, f
such that the eigenspace decomposition of ad h defines a short
grading on g.
For any J with identity e consider in Lie(J)

hJ = −Le , fJ = P, then αJ = 〈e, hJ , fJ〉

defines short subalgebra of Lie(J).
Let g = g−1 ⊕ g0 ⊕ g1 be the Z2-graded Lie algebra, p ∈ g1. For
any x , y ∈ g−1 set

x · y = [[p, x ], y ]

then Jor(g) := (g−1, ·) is a Jordan algebra.

I.Kashuba Representation type of Jordan algebras



Relations between J-mod and g = TKK (J)-modules?
We define two adjoint functors Jor and Lie between J-mod and
g-modules admitting a short grading.

Not every J-module can be obtained from a g-module by
application of Jor : one has to consider ĝ the universal central
extension of g.

Let S (resp. S 1
2
) be the category of ĝ-modules M such that the

action of αJ induces a short grading on M (resp. a grading of
length 2, namely M− 1

2
⊕M 1

2
).

To define Jor let N ∈ S. Then N = N1 ⊕ N0 ⊕ N−1. We set
Jor(N) := N−1

x(m) = [f , x ]m, x ∈ J = g−1,m ∈ N−1.

It is clear that Jor is an exact functor.
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) be the category of ĝ-modules M such that the

action of αJ induces a short grading on M (resp. a grading of
length 2, namely M− 1

2
⊕M 1

2
).

To define Jor let N ∈ S. Then N = N1 ⊕ N0 ⊕ N−1. We set
Jor(N) := N−1

x(m) = [f , x ]m, x ∈ J = g−1,m ∈ N−1.

It is clear that Jor is an exact functor.

I.Kashuba Representation type of Jordan algebras



Relations between J-mod and g = TKK (J)-modules?
We define two adjoint functors Jor and Lie between J-mod and
g-modules admitting a short grading.

Not every J-module can be obtained from a g-module by
application of Jor : one has to consider ĝ the universal central
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Our next step is to define Lie : J −mod1 → S.

Let M ∈ J −mod1. Let A = Lie(J ⊕M). Then we have an exact
sequence

0→ N → A π−→ g→ 0, (4)

where N is an abelian Lie algebra and N−1 = M.
N is a ĝ-module, thus N−1 = M is ĝ0-module.

Let P = ĝ0 ⊕ g−1 and we extend the above ĝ0-module structure on
M to a P-module structure by setting g−1M = 0. Next

Γ(M) = U(ĝ)⊗U(P) M.

We define Lie(M) to be the maximal quotient in Γ(M) which
belongs to S.
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Jor ◦ Lie is isomorphic to the identity functor in J −mod1.
Let N ∈ S and ĝN = N, then the canonical map
Lie(Jor(N))→ N is surjective.
Let N ∈ S and N ĝ := {x ∈ N | ĝx = x} = 0, then the
canonical map N → Lie(Jor(N)) is injective.
If M → L→ 0 is exact in J −mod1, then
Lie(M)→ Lie(L)→ 0 is exact in S.

The splitting J −mod1 ⊕ J −mod0 can not be lifted to the Lie
algebra ĝ, since some modules can have non-trivial extensions with
trivial modules, thus left and right adjoint of the functor Jor are not
isomorphic and the categories S and J −mod1 are not equivalent.
Still they are close enough and one can describe projective modules,
quivers and relations of J −mod1 in terms of S.
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Representation table for TKK (J)

J g S 1
2

S
Symn(k) sp2n V ad , Λ2V

Mn(k)+ sl2n V , V ∗ ad , S2(V ), S2(V ∗), Λ2(V ), Λ2(V ∗)

Symp2n(k) so4n V ad , S2(V )

Jn(E , f ) son+3 Γ Λi (V ), i = 1, . . . , ν + 1
n = 2ν spinor
Jn(E , f ) son+3 Γ+, Γ− Λi (V ), i = 1, . . . , ν

n = 2ν − 1 spinor Λν+1(V )±

A E7 ad
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Quiver of an abelian category

Let C be an abelian category with finitely many simple modules
such that every object has finite length and every simple object has
a projective cover.
Then C is equivalent to the category of finite-dimensional
A-modules. If L1, . . . , Lr is the set of all up to isomorphism simple
objects in C and P1, . . . ,Pr are their projective covers, then A is a
pointed algebra which is usually realized as the path algebra of a
certain quiver Q with relations.
The vertices

Q0 = {simple modules L1, . . . , Lr}

Q1 = {#arrows from vertex Li to vertex Lj is dim Ext1(Lj , Li )}
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It is now clear how to describe the quiver Q.

Lemma
Let g = gs + r be the Levi decomposition of g. Let L and L′ be two
simple gs -modules then dim Ext1(L, L′) equals the multiplicity of L′

in L⊗ r.

Example

Let J = Mn
(+)(k) + Symn then its TKK (J) = sl2n + S2(V ), while

QS 1
2

(J) and QS(J) are correspondingly

S2(V ∗)

##

Λ2(V ∗)

{{
V ∗ // V ad

##{{
S2(V ) Λ2(V )

I.Kashuba Representation type of Jordan algebras



It is now clear how to describe the quiver Q.

Lemma
Let g = gs + r be the Levi decomposition of g. Let L and L′ be two
simple gs -modules then dim Ext1(L, L′) equals the multiplicity of L′

in L⊗ r.

Example

Let J = Mn
(+)(k) + Symn then its TKK (J) = sl2n + S2(V ), while

QS 1
2

(J) and QS(J) are correspondingly

S2(V ∗)

##

Λ2(V ∗)

{{
V ∗ // V ad

##{{
S2(V ) Λ2(V )

I.Kashuba Representation type of Jordan algebras



Example
g = so2m+1 ⊕ V , m ≥ 3

tr
γ0 **

V
γ1 ,,

δ0

jj Λ2V
γ2

**

δ1

jj . . .
δ2

ll
..
Λm−1V

γm−1 ,,
kk ΛmV

δm−1

mm γmff

with the relations

γr−1γr = δrδr−1 = 0,
γr−1δr−1 = δrγr ,
γm−1δm−1 = γ2

m,
for r = 1, . . . ,m − 1.
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