Representation type of Jordan algebras

Iryna Kashuba

Muizenberg, July 2015

Jordan algebras arose from the search of "exceptional" setting for quantum mechanics.

Jordan algebras arose from the search of "exceptional" setting for quantum mechanics.
The "Copenhagen model":

- the physical observables are Hermitian matrices (or operators on Hilbert space);
- the basic operations are multiplication by $\lambda \in \mathbb{C}$, addition, multiplication of matrices, adjoint operator.
Most of matrix operations are not observable!
In 1932 the German physicist Pascual Jordan proposed a program to discover "a new algebraic setting for quantum mechanics", Jordan has chosen a new observable operation called quasi-multiplication

Next step to decide empirically what axioms or laws this operation obey.

Jordan algebras arose from the search of "exceptional" setting for quantum mechanics.
The "Copenhagen model":

- the physical observables are Hermitian matrices (or operators on Hilbert space);
- the basic operations are multiplication by $\lambda \in \mathbb{C}$, addition, multiplication of matrices, adjoint operator.
Most of matrix operations are not observable!
In 1932 the German physicist Pascual Jordan proposed a program to discover "a new algebraic setting for quantum mechanics", Jordan has chosen a new observable operation called quasi-multiplication

$$
x \cdot y:=\frac{1}{2}(x y+y x) .
$$

Next step to decide empirically what axioms or laws this operation obey.

Definition

A Jordan algebra J consists of a real vector space equipped with a bilinear product $x \cdot y$ satisfying the commutative law and the Jordan identity

$$
\begin{gather*}
x \cdot y=y \cdot x \\
\left(x^{2} \cdot y\right) \cdot x=x^{2} \cdot(y \cdot x), \forall x, y \in J \tag{1}
\end{gather*}
$$

A Jordan algebra is formally real if

$$
x_{1}^{2}+\cdots+x_{n}^{2}=0 \Longrightarrow x_{1}=\cdots=x_{n}=0 .
$$

Any associative algebra A over \mathbb{R} gives rise to a Jordan algebra A^{+} under quasi-multiplication: the product $x \cdot y$ is clearly commutative and satisfies the Jordan identity.

A Jordan algebra is called special if it can be realized as a Jordan subalgebra of some A^{+}. For example, if A has an involution \star then the subspace of hermitian elements $H(A, \star)=\left\{x^{\star}=x \mid x \in A\right\}$ forms a special Jordan algebra

Definition

A Jordan algebra J consists of a real vector space equipped with a bilinear product $x \cdot y$ satisfying the commutative law and the Jordan identity

$$
\begin{gather*}
x \cdot y=y \cdot x \\
\left(x^{2} \cdot y\right) \cdot x=x^{2} \cdot(y \cdot x), \forall x, y \in J \tag{1}
\end{gather*}
$$

A Jordan algebra is formally real if

$$
x_{1}^{2}+\cdots+x_{n}^{2}=0 \Longrightarrow x_{1}=\cdots=x_{n}=0
$$

Any associative algebra A over \mathbb{R} gives rise to a Jordan algebra A^{+} under quasi-multiplication: the product $x \cdot y$ is clearly commutative and satisfies the Jordan identity.

A Jordan algebra is called special if it can be realized as a Jordan subalgebra of some A^{+}. For example, if A has an involution \star then the subspace of hermitian elements $H(A, \star)=\left\{x^{\star}=x \mid x \in A\right\}$ forms a special Jordan algebra.

These hermitian algebras are the archetypes of all Jordan algebras. It is easy to check that the hermitian matrices over \mathbb{R}, \mathbb{C} and the quaternions form special Jordan algebras that are formally real.

These hermitian algebras are the archetypes of all Jordan algebras. It is easy to check that the hermitian matrices over \mathbb{R}, \mathbb{C} and the quaternions form special Jordan algebras that are formally real.

One obtains another special formally real Jordan algebra (called spin factor $J S_{\text {pin }}^{n}$ or Jordan algebra of Clifford type) on the space $\mathbb{R} 1 \oplus \mathbb{R}^{n}$, when $n \geq 2$, by making 1 acts as a unit and defining $v \cdot w=\langle v, w\rangle 1$, where $v, w \in \mathbb{R}^{n}$ and \langle,$\rangle is an inner$ product in \mathbb{R}^{n}.

What he physicists were looking for were Jordan algebras where there is no invisible structure $x y$ governing the visible structure $x \cdot y$. A Jordan algebra \mathcal{J} is called exception Jordan hoped that by studying finite-dimendional Jordan algebras he could find families of simple exceptional algebras E_{n} parametrized by natural numbers n, letting n to infinity would provide a suitable infinite-dimensional home for quantum

These hermitian algebras are the archetypes of all Jordan algebras. It is easy to check that the hermitian matrices over \mathbb{R}, \mathbb{C} and the quaternions form special Jordan algebras that are formally real.

One obtains another special formally real Jordan algebra (called spin factor $J S_{\text {pin }}^{n}$ or Jordan algebra of Clifford type) on the space $\mathbb{R} 1 \oplus \mathbb{R}^{n}$, when $n \geq 2$, by making 1 acts as a unit and defining $v \cdot w=\langle v, w\rangle 1$, where $v, w \in \mathbb{R}^{n}$ and \langle,$\rangle is an inner$ product in \mathbb{R}^{n}.

What he physicists were looking for were Jordan algebras where there is no invisible structure $x y$ governing the visible structure $x \cdot y$. A Jordan algebra \mathcal{J} is called exceptional if it is not special, i.e. does not result from quasi-multiplication.

These hermitian algebras are the archetypes of all Jordan algebras. It is easy to check that the hermitian matrices over \mathbb{R}, \mathbb{C} and the quaternions form special Jordan algebras that are formally real.

One obtains another special formally real Jordan algebra (called spin factor $J S_{\text {pin }}^{n}$ or Jordan algebra of Clifford type) on the space $\mathbb{R} 1 \oplus \mathbb{R}^{n}$, when $n \geq 2$, by making 1 acts as a unit and defining $v \cdot w=\langle v, w\rangle 1$, where $v, w \in \mathbb{R}^{n}$ and \langle,$\rangle is an inner$ product in \mathbb{R}^{n}.

What he physicists were looking for were Jordan algebras where there is no invisible structure $x y$ governing the visible structure $x \cdot y$. A Jordan algebra \mathcal{J} is called exceptional if it is not special, i.e. does not result from quasi-multiplication.

Jordan hoped that by studying finite-dimendional Jordan algebras he could find families of simple exceptional algebras E_{n}, parametrized by natural numbers n, letting n to infinity would provide a suitable infinite-dimensional home for quantum mechanics.

In 1934 Jordan, John von Neumann and Eugene Wigner showed that every finite-dimensional formally real Jordan algebra can be written as a direct sum of so-called simple ones, which are four infinite families, together with one exceptional case:

- The Jordan algebra of $n \times n$ self-adjoint real matrices, complex matrices and quaternionic matrices;
- The Jordan algebra of Clifford type corresponding to usual inner product in \mathbb{R}^{n};
- The Jordan algebra $H_{3}(\mathbb{O})$ of 3×3 self-adjoint octonionic matrices, (an exceptional Jordan algebra called the Albert algebra, since A.Albert showed that it is indeed exceptional).

is not Jordan, while $H_{2}(\mathbb{O}) \simeq J$ Sping. The lone $H_{3}(\mathbb{O})$ was too

 isolated to give a clue as to possible existence of inf-dimensional exceptional algebras. Half a centure later Efin Zelmanov quashed all remaining hopes shoming that even in infinite dimensions there are no simpleIn 1934 Jordan, John von Neumann and Eugene Wigner showed that every finite-dimensional formally real Jordan algebra can be written as a direct sum of so-called simple ones, which are four infinite families, together with one exceptional case:

- The Jordan algebra of $n \times n$ self-adjoint real matrices, complex matrices and quaternionic matrices;
- The Jordan algebra of Clifford type corresponding to usual inner product in \mathbb{R}^{n};
- The Jordan algebra $H_{3}(\mathbb{O})$ of 3×3 self-adjoint octonionic matrices, (an exceptional Jordan algebra called the Albert algebra, since A.Albert showed that it is indeed exceptional).

There was only one exceptional algebra in the list!!! $H_{n}(\mathbb{O}), n>3$ is not Jordan, while $H_{2}(\mathbb{O}) \simeq J$ Sping. The lone $H_{3}(\mathbb{O})$ was too isolated to give a clue as to possible existence of inf-dimensional exceptional algebras.
Half a centure later Efin Zelmanov quashed all remaining hopes showing that even in infinite dimensions there are no simple exceptional Jordan algebras other than Albert algebras.

Let $\mathbf{k}=\overline{\mathbf{k}}$, chark $=0$. A Jordan algebra is a commutative k-algebra (J, \cdot) satisfying Jordan identity

$$
\begin{equation*}
\left(x^{2} \cdot y\right) \cdot x=x^{2} \cdot(y \cdot x) \quad x, y \in J . \tag{2}
\end{equation*}
$$

Example

(1) Denote $H_{n}(A)=H\left(M_{n}(A), \bar{j}\right) \subset M_{n}(A)^{+}$
© Let f be a symmetric bilinear form on E, then $J(E, f)=E \oplus \mathbf{k}$ with respect to

(3) Let \mathbb{O} be an Caley algebra over k, then $\mathcal{A}=\mathrm{H}_{3}(\mathbb{O})$ is called the Albert algebra

Let $\mathbf{k}=\overline{\mathbf{k}}$, chark $=0$. A Jordan algebra is a commutative k-algebra (J, \cdot) satisfying Jordan identity

$$
\begin{equation*}
\left(x^{2} \cdot y\right) \cdot x=x^{2} \cdot(y \cdot x) \quad x, y \in J . \tag{2}
\end{equation*}
$$

Example

(1) Denote $H_{n}(A)=H\left(M_{n}(A), \bar{j}\right) \subset M_{n}(A)^{+}$.
(2) Let f be a symmetric bilinear form on E, then $J(E, f)=E \oplus \mathbf{k}$ with respect to

$$
(\alpha+x) \cdot(\beta+y)=\alpha \beta+f(x, y) 1+(\alpha y+\beta x)
$$

$\alpha, \beta \in \mathbf{k}, x, y \in E$ is a Jordan algebra of Clifford type.
(3) Let \mathbb{O} be an Caley algebra over k, then $\mathcal{A}=\mathrm{H}_{3}(\mathbb{O})$ is called the Albert algebra

Suppose M is a k -vector space equipped with two bilinear mappings

$$
I, r: J \otimes M \rightarrow M \quad I:(a, m) \rightarrow a m, \quad r:(a, m) \rightarrow m a,
$$

and define a product on $\Omega=J \oplus M$

$$
\left(a_{1}+m_{1}\right) \circ\left(a_{2}+m_{2}\right)=a_{1} \cdot a_{2}+a_{1} m_{2}+m_{1} a_{2} .
$$

M is a Jordan bimodule for $J \Leftrightarrow \Omega=(\Omega, \circ)$ is a Jordan algebra.
(bi)representation if for all $a, b \in J$

$$
[\rho(a), \rho(a \cdot a)]=0
$$

Suppose M is a \mathbf{k}-vector space equipped with two bilinear mappings

$$
I, r: J \otimes M \rightarrow M \quad I:(a, m) \rightarrow a m, \quad r:(a, m) \rightarrow m a
$$

and define a product on $\Omega=J \oplus M$

$$
\left(a_{1}+m_{1}\right) \circ\left(a_{2}+m_{2}\right)=a_{1} \cdot a_{2}+a_{1} m_{2}+m_{1} a_{2} .
$$

M is a Jordan bimodule for $J \Leftrightarrow \Omega=(\Omega, \circ)$ is a Jordan algebra.
Equivalently a linear map $\rho: J \rightarrow \operatorname{End}_{k} M, \rho(a) m=a m$ defines a (bi)representation if for all $a, b \in J$

$$
\begin{gathered}
{[\rho(a), \rho(a \cdot a)]=0} \\
2 \rho(a) \rho(b) \rho(a)+\rho((a \cdot a) \cdot b)=2 \rho(a) \rho(a \cdot b)+\rho(b) \rho(a \cdot a)
\end{gathered}
$$

For any J the category of k-finite dimensional J-bimodules is equivalent to the category of finite dimensional left U-modules for some associative algebra called the universal multiplicative enveloping algebra $U=U(J)$. The algebra U can be constructed as a quotient of the tensor
algebra $F(J) / R$, where R is an ideal generated by the elements:

We denote by J-mod the category of finite dimensional J-bimodules.

For any J the category of \mathbf{k}-finite dimensional J-bimodules is equivalent to the category of finite dimensional left U-modules for some associative algebra called the universal multiplicative enveloping algebra $U=U(J)$.
The algebra U can be constructed as a quotient of the tensor algebra $F(J) / R$, where R is an ideal generated by the elements:

$$
\begin{gathered}
a_{1} \otimes a_{2} \otimes a_{3}+a_{3} \otimes a_{2} \otimes a_{1}+\left(a_{1} \cdot a_{3}\right) \cdot a_{2} \\
-a_{1} \otimes a_{2} \cdot a_{3}-a_{2} \otimes a_{1} \cdot a_{3}-a_{3} \otimes a_{1} \cdot a_{2} \\
a_{1} \otimes a_{2} \cdot a_{3}+a_{2} \otimes a_{1} \cdot a_{3}+a_{3} \otimes a_{1} \cdot a_{2} \\
-a_{2} \cdot a_{3} \otimes a_{1}-a_{1} \cdot a_{3} \otimes a_{2}-a_{1} \cdot a_{2} \otimes a_{3}, \quad a_{1}, a_{2}, a_{3} \in J .
\end{gathered}
$$

We denote by J-mod the category of finite dimensional J-bimodules.

Jordan algebras versus Lie algebras

(1) Let A be an associative algebra we construct $A^{+}=\left(A, \frac{1}{2}(a b+b a)\right), \quad A^{-}=(A, a b-b a)$.
(3) For any Lie algebra \mathfrak{g} its universal enveloping algebra $U(\mathfrak{g})=F(\mathfrak{g}) /\langle a b-b a-\lceil a, b\rceil\rangle$ and by PBW thm

$$
\mathfrak{g} \subset U(\mathfrak{g})^{-} \text {e } \mathfrak{g}-\bmod \simeq U(\mathfrak{g})-\bmod .
$$

(ㄷ) $S(J)=F(J) /\langle a b+b a-2 a \cdot b\rangle$ is called universal associative enveloping of J and

$$
J \subset S(J)^{+} \Longleftrightarrow J \text { is special, } J-\bmod _{\frac{1}{2}} \simeq S(J)-\bmod .
$$

Let $\sigma: J \rightarrow \operatorname{End}_{\mathbf{k}} M$, satisfying for all $a, b \in J$

$$
\begin{equation*}
\sigma(a \cdot b)=\frac{1}{2}(\sigma(a) \sigma(b)+\sigma(b) \sigma(a)) \tag{3}
\end{equation*}
$$

This gives the structure of J-bimodule on M via $\frac{1}{2} \sigma: J \rightarrow \operatorname{End}_{\mathrm{k}} M$, and is called one-sided (bi)modules

Jordan algebras versus Lie algebras

(1) Let A be an associative algebra we construct $A^{+}=\left(A, \frac{1}{2}(a b+b a)\right), \quad A^{-}=(A, a b-b a)$.
(2) For $\forall \mathfrak{g} \operatorname{dim}_{\mathbf{k}} U(\mathfrak{g})=\infty$ while $\operatorname{dim}_{\mathbf{k}} J<\infty \Rightarrow \operatorname{dim}_{\mathbf{k}} U(J)<\infty$.
(3) For any Lie algebra \mathfrak{g} its universal enveloping algebra $U(\mathfrak{g})=F(\mathfrak{g}) /\langle a b-b a-[a, b]\rangle$ and by PBW thm

$$
\mathfrak{g} \subset U(\mathfrak{g})^{-} \text {e } \mathfrak{g}-\bmod \sim U(\mathfrak{g})-\bmod .
$$

(1) $S(J)=F(J) /\langle a b+b a-2 a \cdot b\rangle$ is called universal
associative enveloping of J and

$$
I \subset S(I)^{+} \Longleftrightarrow 1 \text { is snecial, } I-\bmod _{\frac{1}{2}} \simeq S(J)-\bmod .
$$

Let $\sigma: J \rightarrow \operatorname{End}_{\mathbf{k}} M$, satisfying for all $a, b \in J$

$$
\begin{equation*}
\sigma(a \cdot b)=\frac{1}{2}(\sigma(a) \sigma(b)+\sigma(b) \sigma(a)) . \tag{3}
\end{equation*}
$$

This gives the structure of J-bimodule on M via $\frac{1}{2} \sigma: J \rightarrow \operatorname{End}_{\mathbf{k}} M$, and is called one-sided (bi)modules

Jordan algebras versus Lie algebras

(1) Let A be an associative algebra we construct

$$
A^{+}=\left(A, \frac{1}{2}(a b+b a)\right), \quad A^{-}=(A, a b-b a) .
$$

(2) For $\forall \mathfrak{g} \operatorname{dim}_{\mathbf{k}} U(\mathfrak{g})=\infty$ while $\operatorname{dim}_{\mathbf{k}} J<\infty \Rightarrow \operatorname{dim}_{\mathbf{k}} U(J)<\infty$.
(3) For any Lie algebra \mathfrak{g} its universal enveloping algebra $U(\mathfrak{g})=F(\mathfrak{g}) /\langle a b-b a-[a, b]\rangle$ and by PBW thm

$$
\mathfrak{g} \subset U(\mathfrak{g})^{-} \text {e } \mathfrak{g}-\bmod \simeq U(\mathfrak{g})-\bmod
$$

(9) $S(J)=F(J) /\langle a b+b a-2 a \cdot b\rangle$ is called universal associative enveloping of J and $I \subset S(J)^{+} \longleftrightarrow J$ is special, $J-\bmod _{\frac{1}{2}} \simeq S(J)-\bmod$
Let $\sigma: J \rightarrow$ End $_{\mathrm{k}} M$, satisfying for all $a, b \in J$

$$
\sigma(a \cdot b)=\frac{1}{2}(\sigma(a) \sigma(b)+\sigma(b) \sigma(a)) .
$$

This gives the structure of J-bimodule on M via
$\frac{1}{2} \sigma: J \rightarrow$ End $_{k} M$, and is called one-sided (bi) modules.

Jordan algebras versus Lie algebras

(1) Let A be an associative algebra we construct

$$
A^{+}=\left(A, \frac{1}{2}(a b+b a)\right), \quad A^{-}=(A, a b-b a) .
$$

(2) For $\forall \mathfrak{g} \operatorname{dim}_{\mathbf{k}} U(\mathfrak{g})=\infty$ while $\operatorname{dim}_{\mathbf{k}} J<\infty \Rightarrow \operatorname{dim}_{\mathbf{k}} U(J)<\infty$.
(3) For any Lie algebra \mathfrak{g} its universal enveloping algebra

$$
\begin{aligned}
& U(\mathfrak{g})=F(\mathfrak{g}) /\langle a b-b a-[a, b]\rangle \text { and by PBW thm } \\
& \mathfrak{g} \subset U(\mathfrak{g})^{-} \text {e } \mathfrak{g}-\bmod \simeq U(\mathfrak{g}) \text {-mod. }
\end{aligned}
$$

(4) $S(J)=F(J) /\langle a b+b a-2 a \cdot b\rangle$ is called universal associative enveloping of J and

$$
J \subset S(J)^{+} \Longleftrightarrow J \text { is special }, \quad J-\bmod _{\frac{1}{2}} \simeq S(J)-\bmod
$$

Let $\sigma: J \rightarrow \operatorname{End}_{\mathbf{k}} M$, satisfying for all $a, b \in J$

$$
\begin{equation*}
\sigma(a \cdot b)=\frac{1}{2}(\sigma(a) \sigma(b)+\sigma(b) \sigma(a)) \tag{3}
\end{equation*}
$$

This gives the structure of J-bimodule on M via $\frac{1}{2} \sigma: J \rightarrow \operatorname{End}_{\mathbf{k}} M$, and is called one-sided (bi)modules.

Let e be an identity element in J then M is called unital if $\rho(e) m=m$ for all $m \in M$, denote by J-mod ${ }_{1} \subset J$-mod, one can introduce the corresponding enveloping algebra $U_{1}(J)$.

Let $\rho: a \rightarrow \rho_{a}$ is a representation of J corresponding to M then

$$
\rho_{e}\left(\rho_{e}-1\right)\left(2 \rho_{e}-1\right)=0
$$

where $M_{i}=\left\{m_{i} \mid \rho_{e} m_{i}=i m_{i}\right\}$
In narticular $\rho: J \rightarrow$ Fnd $_{k} M_{1}$, is a unital representation, and $\rho: J \rightarrow$ End $_{\mathbf{k}} M_{\frac{1}{2}}$ is one-sided representation of J, while $\rho: J \rightarrow \operatorname{End}_{\mathbf{k}} M_{0}$ is one-dimensional trivial representation.

Therefore to describe I-mod it suffices to describe $S(\Omega)-\bmod$ and $U_{1}(J)-m o d$.

Let e be an identity element in J then M is called unital if $\rho(e) m=m$ for all $m \in M$, denote by $J-\bmod _{1} \subset J$-mod, one can introduce the corresponding enveloping algebra $U_{1}(J)$.

Let $\rho: a \rightarrow \rho_{\mathrm{a}}$ is a representation of J corresponding to M then

$$
\rho_{e}\left(\rho_{e}-1\right)\left(2 \rho_{e}-1\right)=0
$$

gives the Peirce decomposition for M

$$
M=M_{0} \oplus M_{\frac{1}{2}} \oplus M_{1}
$$

where $M_{i}=\left\{m_{i} \mid \rho_{e} m_{i}=i m_{i}\right\}$.
In particular $\rho: J \rightarrow \operatorname{End}_{\mathbf{k}} M_{1}$, is a unital representation, and $\rho: J \rightarrow \operatorname{End}_{\mathbf{k}} M_{\frac{1}{2}}$ is one-sided representation of J, while $\rho: J \rightarrow \operatorname{End}_{\mathbf{k}} M_{0}$ is one-dimensional trivial representation.

Let e be an identity element in J then M is called unital if $\rho(e) m=m$ for all $m \in M$, denote by $J-\bmod _{1} \subset J$-mod, one can introduce the corresponding enveloping algebra $U_{1}(J)$.
Let $\rho: a \rightarrow \rho_{a}$ is a representation of J corresponding to M then

$$
\rho_{e}\left(\rho_{e}-1\right)\left(2 \rho_{e}-1\right)=0
$$

gives the Peirce decomposition for M

$$
M=M_{0} \oplus M_{\frac{1}{2}} \oplus M_{1}
$$

where $M_{i}=\left\{m_{i} \mid \rho_{e} m_{i}=i m_{i}\right\}$.
In particular $\rho: J \rightarrow \operatorname{End}_{\mathbf{k}} M_{1}$, is a unital representation, and $\rho: J \rightarrow \operatorname{End}_{\mathbf{k}} M_{\frac{1}{2}}$ is one-sided representation of J, while $\rho: J \rightarrow \operatorname{End}_{\mathbf{k}} M_{0}$ is one-dimensional trivial representation.

Therefore to describe J-mod it suffices to describe $S(J)$-mod and $U_{1}(J)$-mod.

We start we the Albert classification of simple finite-dimensional:

- k;
- J(V,f), f non-degenerate;
- $H_{n}(C), n \geq 3,(C, \tau)$ composition algebra of dimension 1, 2, 4;
- \mathcal{A}, the Albert algebra.

In 1954, N. Jacobson described all irreducible modules for J simple:

We start we the Albert classification of simple finite-dimensional:

- k;
- $J(V, f), f$ non-degenerate;
- $H_{n}(C), n \geq 3,(C, \tau)$ composition algebra of dimension 1, 2, 4;
- \mathcal{A}, the Albert algebra.

We start we the Albert classification of simple finite-dimensional:

- k;
- $J(V, f), f$ non-degenerate;
- $H_{n}(C), n \geq 3,(C, \tau)$ composition algebra of dimension $1,2,4$;

We start we the Albert classification of simple finite-dimensional:

- k;
- $J(V, f), f$ non-degenerate;
- $H_{n}(C), n \geq 3,(C, \tau)$ composition algebra of dimension $1,2,4$;
- \mathcal{A}, the Albert algebra.

We start we the Albert classification of simple finite-dimensional:

- k;
- $J(V, f), f$ non-degenerate;
- $H_{n}(C), n \geq 3,(C, \tau)$ composition algebra of dimension $1,2,4$;
- \mathcal{A}, the Albert algebra.

In 1954, N. Jacobson described all irreducible modules for J simple:

J	$S(J)$	$U_{1}(J)$
	M_{n}	$M_{\frac{n(n+1)}{2}} \oplus M_{\frac{n(n-1)}{2}}$
$M_{n}(\mathbf{k})^{+}$	$M_{n} \oplus M_{n}$	$\begin{aligned} & M_{n^{2}} \oplus M_{\frac{n(n+1)}{2}} \oplus M_{\frac{n(n+1)}{2}} \\ & \quad \oplus M_{\frac{n(n-1)}{2}} \oplus M_{\frac{n(n-1)}{2}} \end{aligned}$
$\operatorname{Symp}_{2 n}(\mathbf{k})$	$M_{2 n}$	$M_{n(2 n-1)} \oplus M_{n(2 n+1)}$
$\begin{gathered} J_{n}(V, f) \\ \operatorname{dim} V=n \text { is even } \end{gathered}$	$M_{2}{ }^{\text {n }}$	$\left.s=\binom{n+1}{1}, \begin{array}{c} \oplus_{s} M_{s} \\ 3 \end{array}\right), \ldots,\binom{n+1}{n+1}$
$\begin{gathered} J_{n}(V, f) \\ n=2 \nu-1 \end{gathered}$	$M_{2^{n-1}}+M_{2^{n-1}}$	$\begin{gathered} M_{\frac{1}{2}}\binom{n+1}{\nu} \oplus M_{\frac{1}{2}\binom{n+1}{n}} \oplus_{s} M_{s} \\ s=\binom{n+1}{0},\binom{n+1}{1}, \ldots,\binom{n+1}{\nu-1} \end{gathered}$
\mathcal{A}	0	$M_{27}(\mathrm{k})$

Let S_{1} and S_{2} be in J - $\bmod _{\frac{1}{2}}$ then we may form the Kronecker sum of two given one-sided modules $S=S_{1} \otimes S_{2} \in J$-mod ${ }_{1}$ by setting

$$
a\left(s_{1} \otimes s_{2}\right)=a s_{1} \otimes s_{2}+s_{1} \otimes a s_{2}
$$

Let S_{1} and S_{2} be in $J-\bmod _{\frac{1}{2}}$ then we may form the Kronecker sum of two given one-sided modules $S=S_{1} \otimes S_{2} \in J$-mod ${ }_{1}$ by setting

$$
a\left(s_{1} \otimes s_{2}\right)=a s_{1} \otimes s_{2}+s_{1} \otimes a s_{2}
$$

Let $J_{s}=J_{1} \oplus J_{2} \oplus \cdots \oplus J_{r}$ be a semi-simple Jordan algebra and $M \in J_{s}-\bmod _{1}, M$ is indecomposable, then we have:
(1) M is a unital J_{i}-module;
(2) M is a Kronecker sum of two irreducible one-sided modules one of each is in J_{i} - $\bmod _{\frac{1}{2}}$ and the other in J_{j} - $\bmod _{\frac{1}{2}}, 1 \leq i \neq j \leq r$.
There were no general results on representations of Jordan algebras after Jacobson.

Aim: Describe Jordan algebras for which one can classify all finite-dimensional representations of $J \Longleftrightarrow$ all finite-dimensional representations of $U(J)$.

Let S_{1} and S_{2} be in J - $\bmod _{\frac{1}{2}}$ then we may form the Kronecker sum of two given one-sided modules $S=S_{1} \otimes S_{2} \in J$-mod ${ }_{1}$ by setting

$$
a\left(s_{1} \otimes s_{2}\right)=a s_{1} \otimes s_{2}+s_{1} \otimes a s_{2}
$$

Let $J_{s}=J_{1} \oplus J_{2} \oplus \cdots \oplus J_{r}$ be a semi-simple Jordan algebra and $M \in J_{s}-\bmod _{1}, M$ is indecomposable, then we have:
(1) M is a unital J_{i}-module;
(2) M is a Kronecker sum of two irreducible one-sided modules one of each is in J_{i} - $\bmod _{\frac{1}{2}}$ and the other in J_{j}-mod ${ }_{\frac{1}{2}}, 1 \leq i \neq j \leq r$.
There were no general results on representations of Jordan algebras after Jacobson.

Aim: Describe Jordan algebras for which one can classify all finite-dimensional representations of $J \Longleftrightarrow$ all finite-dimensional representations of $U(J)$.

Let S_{1} and S_{2} be in J-mod ${ }_{\frac{1}{2}}$ then we may form the Kronecker sum of two given one-sided modules $S=S_{1} \otimes S_{2} \in J$-mod ${ }_{1}$ by setting

$$
a\left(s_{1} \otimes s_{2}\right)=a s_{1} \otimes s_{2}+s_{1} \otimes a s_{2}
$$

Let $J_{s}=J_{1} \oplus J_{2} \oplus \cdots \oplus J_{r}$ be a semi-simple Jordan algebra and $M \in J_{s}-\bmod _{1}, M$ is indecomposable, then we have:
(1) M is a unital J_{i}-module;
(2) M is a Kronecker sum of two irreducible one-sided modules one of each is in J_{i} - $\bmod _{\frac{1}{2}}$ and the other in J_{j} - $\bmod _{\frac{1}{2}}, 1 \leq i \neq j \leq r$.
There were no general results on representations of Jordan algebras after Jacobson.

Aim: Describe Jordan algebras for which one can classify all finite-dimensional representations of $J \Longleftrightarrow$ all finite-dimensional representations of $U(J)$.

Representation type of algebra

Let k be algebraically closed field and A be an associative finite dimensional k-algebra. Then A is of

- a finite representation type if there are finitely many isomorphism classes of finitely generated, indecomposable left A-modules.
- a tame representation type if isomorphism classes of finitely generated, indecomposable left A-modules form in each dimension finitely many one-parameter families.
- or a wild representation type
$A \Longleftrightarrow$ quiver with relations $(Q(A), R)$ such that
$Q-\bmod \sim_{\text {Mor }} A-\bmod$
One can talk about one-sided representation type of J (三 type of $S(J)$) and unital representation type of $J\left(\equiv\right.$ type of $\left.U_{1}(J)\right)$.

Representation type of algebra

Let k be algebraically closed field and A be an associative finite dimensional k-algebra. Then A is of

- a finite representation type if there are finitely many isomorphism classes of finitely generated, indecomposable left A-modules.
- a tame representation type if isomorphism classes of finitely generated, indecomposable left A-modules form in each dimension finitely many one-parameter families.
- or a wild representation type
$A \Longleftrightarrow$ quiver with relations $(Q(A), R)$ such that

$$
Q-\bmod \sim_{\text {Mor }} A-\bmod
$$

One can talk about one-sided representation type of J (\equiv type of $S(J)$) and unital representation type of J (三 type of $U_{1}(J)$).

Representation type of algebra

Let k be algebraically closed field and A be an associative finite dimensional k-algebra. Then A is of

- a finite representation type if there are finitely many isomorphism classes of finitely generated, indecomposable left A-modules.
- a tame representation type if isomorphism classes of finitely generated, indecomposable left A-modules form in each dimension finitely many one-parameter families.
- or a wild representation type
$A \Longleftrightarrow$ quiver with relations $(Q(A), R)$ such that

$$
Q-\bmod \sim_{\text {Mor }} A-\bmod
$$

One can talk about one-sided representation type of J (\equiv type of $S(J)$) and unital representation type of $J\left(\equiv\right.$ type of $U_{1}(J)$).

Question: What class of algebras to choose?

Inspired by results of P. Gabriel for associative case:

$$
J=J_{S}+\operatorname{Rad} J, \quad \operatorname{Rad}^{2} J=0
$$

Let Q be a quiver, the quiver double $D(Q)$ of Q is defined as follows:

$$
\begin{aligned}
& D\left(Q_{0}\right)=\left\{X^{+}, X-\mid X \in Q_{0}\right\} \\
& D\left(Q_{1}\right)=\left\{\tilde{a}: s(a)^{-} \rightarrow e(a)^{+} \mid a \in Q_{1}\right\} .
\end{aligned}
$$

Theorem (Gabriel)

Let A be a finite dimensional associative algebra over algebraically closed field, such that $\operatorname{Rad}^{2} A=0, Q$ its quiver. Then A is of finite (tame) representation type if and only if $D(Q)$ is a disjoint union of simply-laced Dynkin diagrams (extended Dynkin diagrams).

Question: What class of algebras to choose?

Inspired by results of P. Gabriel for associative case:

$$
J=J_{s}+\operatorname{Rad} J, \quad \operatorname{Rad}^{2} J=0
$$

Let Q be a quiver, the quiver double $D(Q)$ of Q is defined as follows:

$$
\begin{aligned}
& D\left(Q_{0}\right)=\left\{X^{+}, X^{-} \mid X \in Q_{0}\right\} \\
& D\left(Q_{1}\right)=\left\{\tilde{a}: s(a)^{-} \rightarrow e(a)^{+} \mid a \in Q_{1}\right\}
\end{aligned}
$$

> Theorem (Gabriel)
> Let A be a finite dimensional associative algebra over algebraically closed field, such that $\operatorname{Rad}^{2} A=0, Q$ its quiver. Then A is of finite (tame) representation type if and only if $D(Q)$ is a disjoint union of simply-laced Dynkin diagrams (extended Dynkin diagrams)

Question: What class of algebras to choose?

Inspired by results of P. Gabriel for associative case:

$$
J=J_{s}+\operatorname{Rad} J, \quad \operatorname{Rad}^{2} J=0
$$

Let Q be a quiver, the quiver double $D(Q)$ of Q is defined as follows:

$$
\begin{aligned}
& D\left(Q_{0}\right)=\left\{X^{+}, X^{-} \mid X \in Q_{0}\right\} \\
& D\left(Q_{1}\right)=\left\{\tilde{a}: s(a)^{-} \rightarrow e(a)^{+} \mid a \in Q_{1}\right\} .
\end{aligned}
$$

Theorem (Gabriel)
Let A be a finite dimensional associative algebra over algebraically closed field, such that $\operatorname{Rad}^{2} A=0, Q$ its quiver. Then A is of finite (tame) representation type if and only if $D(Q)$ is a disjoint union of simply-laced Dynkin diagrams (extended Dynkin diagrams)

Question: What class of algebras to choose?

Inspired by results of P. Gabriel for associative case:

$$
J=J_{s}+\operatorname{Rad} J, \quad \operatorname{Rad}^{2} J=0
$$

Let Q be a quiver, the quiver double $D(Q)$ of Q is defined as follows:

$$
\begin{aligned}
& D\left(Q_{0}\right)=\left\{X^{+}, X^{-} \mid X \in Q_{0}\right\} \\
& D\left(Q_{1}\right)=\left\{\tilde{a}: s(a)^{-} \rightarrow e(a)^{+} \mid a \in Q_{1}\right\} .
\end{aligned}
$$

Theorem (Gabriel)

Let A be a finite dimensional associative algebra over algebraically closed field, such that $\operatorname{Rad}^{2} A=0, Q$ its quiver. Then A is of finite (tame) representation type if and only if $D(Q)$ is a disjoint union of simply-laced Dynkin diagrams (extended Dynkin diagrams).

Have to deal with four cases:
(1) describe matrix Jordan algebras which are tame/finite with respect to their one-sided representation type:
K., Ovsienko S., Shestakov I., Representation type of Jordan algebras, Advances in Math., 2011.
(2) describe Jordan algebras of Clifford type which are
tame/finite with respect to their one-sided representation
(3) describe matrix Jordan algebras which are tame/finite with respect to their unital representation type;

- describe Jordan algebras of Clifford type which are
tame/finite with respect to their unital representation type;
Last three items with Vera Serganova using
the Tits-Kantor-Koecher construction.

Have to deal with four cases:
(1) describe matrix Jordan algebras which are tame/finite with respect to their one-sided representation type:
K., Ovsienko S., Shestakov I., Representation type of Jordan algebras, Advances in Math., 2011.
(2) describe Jordan algebras of Clifford type which are tame/finite with respect to their one-sided representation type;
(3) describe matrix Jordan algebras which are tame/finite with respect to their unital representation type;
(4) describe Jordan algebras of Clifford type which are tame/finite with respect to their unital representation type;
Last three items with Vera Serganova using
the Tits-Kantor-Koecher construction.

Have to deal with four cases:
(1) describe matrix Jordan algebras which are tame/finite with respect to their one-sided representation type:
K., Ovsienko S., Shestakov I., Representation type of Jordan algebras, Advances in Math., 2011.
(2) describe Jordan algebras of Clifford type which are tame/finite with respect to their one-sided representation type;
(3) describe matrix Jordan algebras which are tame/finite with respect to their unital representation type;
(4) describe Jordan algebras of Clifford type which are tame/finite with respect to their unital representation type;
Last three items with Vera Serganova using
the Tits-Kantor-Koecher construction.

A short grading of \mathfrak{g} is a \mathbb{Z}-grading of the form $\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$. Let P be the commutative bilinear map on $J: P(x, y)=x \cdot y$. We associate to J a Lie algebra with short grading

$$
\operatorname{Lie}(J)=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}
$$

A short grading of \mathfrak{g} is a \mathbb{Z}-grading of the form $\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$. Let P be the commutative bilinear map on $J: P(x, y)=x \cdot y$. We associate to J a Lie algebra with short grading

$$
\operatorname{Lie}(J)=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}
$$

Put $\mathfrak{g}_{-1}=J, \mathfrak{g}_{0}=\left\langle L_{a},\left[L_{a}, L_{b}\right] \mid a, b \in J\right\rangle, \mathfrak{g}_{1}=\left\langle P,\left[L_{a}, P\right] \mid a \in J\right\rangle$

- $[L, x]=L(x)$ for $x \in \mathfrak{g}_{-1}, L \in \mathfrak{g}_{0}$;
- $[B, x](y)=B(x, y)$ for $B \in \mathfrak{g}_{1}$ and $x, y \in \mathfrak{g}_{-1}$;
- $[L, B](x, y)=L(B(x, y))-B(L(x), y)+B(x, L(y))$ for any $B \in \mathfrak{g}_{1}, L \in \mathfrak{g}_{0}$ and $x, y \in \mathfrak{g}_{-1}$.
Then $\mathfrak{g}=\operatorname{Lie}(J)$ is Lie algebra and is called the Tits-Kantor-Koecher (TKK) construction for J.

A short subalgebra of \mathfrak{g} is an $\mathfrak{s l}_{2}$ subalgebra spanned by e, h, f such that the eigenspace decomposition of ad h defines a short grading on \mathfrak{g}.
For any J with identity e consider in Lie(J)
defines short subalgebra of $\operatorname{Lie}(J)$. Let $\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ be the \mathbb{Z}_{2}-graded Lie algebra, $p \in \mathfrak{g}_{1}$. For any $x, y \in \mathfrak{g}_{-1}$ set $x \cdot y=[[p, x], y]$
then $\operatorname{Jor}(\mathrm{g}):=\left(g_{-1},\right)$ is a Jordan algebra

A short subalgebra of \mathfrak{g} is an $\mathfrak{s l}_{2}$ subalgebra spanned by e, h, f such that the eigenspace decomposition of ad h defines a short grading on \mathfrak{g}.
For any J with identity e consider in $\operatorname{Lie}(J)$

$$
h_{J}=-L_{e}, \quad f_{J}=P, \quad \text { then } \alpha_{J}=\left\langle e, h_{J}, f_{J}\right\rangle
$$

defines short subalgebra of $\operatorname{Lie}(J)$.
any $x, y \in \mathfrak{g}_{-1}$ set

then $\operatorname{Jor}(\mathfrak{g}):=\left(\mathfrak{g}_{-1}, \cdot\right)$ is a Jordan algebra.

A short subalgebra of \mathfrak{g} is an $\mathfrak{s l}_{2}$ subalgebra spanned by e, h, f such that the eigenspace decomposition of ad h defines a short grading on \mathfrak{g}.
For any J with identity e consider in $\operatorname{Lie}(J)$

$$
h_{J}=-L_{e}, \quad f_{J}=P, \quad \text { then } \alpha_{J}=\left\langle e, h_{J}, f_{J}\right\rangle
$$

defines short subalgebra of $\operatorname{Lie}(J)$.
Let $\mathfrak{g}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1}$ be the \mathbb{Z}_{2}-graded Lie algebra, $p \in \mathfrak{g}_{1}$. For any $x, y \in \mathfrak{g}_{-1}$ set

$$
x \cdot y=[[p, x], y]
$$

then $\operatorname{Jor}(\mathfrak{g}):=\left(\mathfrak{g}_{-1}, \cdot\right)$ is a Jordan algebra.

Relations between J-mod and $\mathfrak{g}=\operatorname{TKK}(J)$-modules?

We define two adjoint functors Jor and Lie between J-mod and \mathfrak{g}-modules admitting a short grading.

Not every J-module can be obtained from a g-module by application of Jor: one has to consider $\hat{\mathfrak{g}}$ the universal central extension of \mathfrak{g}.

Let $\mathcal{S}\left(\right.$ resp. $\left.S_{\frac{1}{2}}\right)$ be the category of \hat{g}-modules M such that the action of α_{J} induces a short grading on M (resp. a grading of length 2 , namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$).

To define Jor let $N \in \mathcal{S}$. Then $N=N_{1} \oplus N_{0} \oplus N_{-1}$. We set $\operatorname{Jor}(N):=N_{-1}$

$$
x(m)=[f, x] m, \quad x \in J=\mathfrak{g}_{-1}, m \in N_{-1} .
$$

It is clear that Jor is an exact functor.

Relations between J-mod and $\mathfrak{g}=\operatorname{TKK}(J)$-modules?
We define two adjoint functors Jor and Lie between J-mod and \mathfrak{g}-modules admitting a short grading.

Let \mathcal{S} (resp. $\mathcal{S}_{\frac{1}{2}}$) be the category of $\hat{\mathfrak{g}}$-modules M such that the action of α_{J} induces a short grading on M (resp. a grading of length 2 , namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$).

To define Jor let $N \in \mathcal{S}$. Then $N=N_{1} \oplus N_{0} \oplus N_{-1}$. We set $\operatorname{Jor}(N):=N_{-1}$

$$
x(m)=[f, x] m, \quad x \in J=\mathfrak{g}_{-1}, m \in N_{-1} .
$$

It is clear that Jor is an exact functor.

Relations between J-mod and $\mathfrak{g}=\operatorname{TKK}(J)$-modules?
We define two adjoint functors Jor and Lie between J-mod and \mathfrak{g}-modules admitting a short grading.

Not every J-module can be obtained from a \mathfrak{g}-module by application of Jor: one has to consider $\hat{\mathfrak{g}}$ the universal central extension of \mathfrak{g}.

To define Jor let $N \in \mathcal{S}$. Then $N=N_{1} \oplus N_{0} \oplus N_{-1}$. We set $\operatorname{Jor}(N):=N_{-1}$

$$
x(m)=[f, x] m, \quad x \in J=\mathfrak{g}_{-1}, m \in N_{-1} .
$$

It is clear that Jor is an exact functor

Relations between J-mod and $\mathfrak{g}=\operatorname{TKK}(J)$-modules?
We define two adjoint functors Jor and Lie between J-mod and \mathfrak{g}-modules admitting a short grading.

Not every J-module can be obtained from a \mathfrak{g}-module by application of Jor: one has to consider $\hat{\mathfrak{g}}$ the universal central extension of \mathfrak{g}.

Let \mathcal{S} (resp. $\mathcal{S}_{\frac{1}{2}}$) be the category of $\hat{\mathfrak{g}}$-modules M such that the action of α_{J} induces a short grading on M (resp. a grading of length 2 , namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$.

To define Jor let $N \in \mathcal{S}$. Then $N=N_{1} \oplus N_{0} \oplus N_{-1}$. We set $\operatorname{Jor}(N):=N_{-1}$

$$
x(m)=[f, x] m, \quad x \in J=g_{-1}, m \in N_{-1} .
$$

It is clear that Jor is an exact functor.

Relations between J-mod and $\mathfrak{g}=T K K(J)$-modules?
We define two adjoint functors Jor and Lie between J-mod and \mathfrak{g}-modules admitting a short grading.

Not every J-module can be obtained from a \mathfrak{g}-module by application of Jor: one has to consider $\hat{\mathfrak{g}}$ the universal central extension of \mathfrak{g}.

Let \mathcal{S} (resp. $\mathcal{S}_{\frac{1}{2}}$) be the category of $\hat{\mathfrak{g}}$-modules M such that the action of α_{J} induces a short grading on M (resp. a grading of length 2 , namely $M_{-\frac{1}{2}} \oplus M_{\frac{1}{2}}$).

To define Jor let $N \in \mathcal{S}$. Then $N=N_{1} \oplus N_{0} \oplus N_{-1}$. We set $\operatorname{Jor}(N):=N_{-1}$

$$
x(m)=[f, x] m, \quad x \in J=\mathfrak{g}_{-1}, m \in N_{-1} .
$$

It is clear that Jor is an exact functor.

Our next step is to define Lie: $J-\bmod _{1} \rightarrow \mathcal{S}$.
Let $M \in J-\bmod _{1}$. Let $\mathcal{A}=\operatorname{Lie}(\mathcal{J} \oplus M)$. Then we have an exact
sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow \mathcal{A} \xrightarrow{\pi} \mathfrak{g} \rightarrow 0, \tag{4}
\end{equation*}
$$

where N is an abelian Lie algebra and $N_{-1}=M$.
N is a $\hat{\mathfrak{g}}$-module, thus $N_{-1}=M$ is $\hat{\mathfrak{g}}_{0}$-module.
Let $\mathcal{P}=\hat{\mathfrak{g}}_{0} \oplus \mathfrak{g}_{-1}$ and we extend the above $\hat{\mathfrak{g}}_{0}$-module structure on M to a \mathcal{P}-module structure by setting $\mathfrak{g}_{-1} M=0$. Next

$$
\Gamma(M)=U(\hat{\mathfrak{g}}) \otimes U(\mathcal{P}) M .
$$

We define $\operatorname{Lie}(M)$ to be the maximal quotient in $\Gamma(M)$ which belongs to \mathcal{S}.

Our next step is to define Lie: $J-\bmod _{1} \rightarrow \mathcal{S}$.
Let $M \in J-\bmod _{1}$. Let $\mathcal{A}=\operatorname{Lie}(\mathcal{J} \oplus M)$. Then we have an exact sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow \mathcal{A} \xrightarrow{\pi} \mathfrak{g} \rightarrow 0, \tag{4}
\end{equation*}
$$

where N is an abelian Lie algebra and $N_{-1}=M$.
N is a $\hat{\mathfrak{g}}$-module, thus $N_{-1}=M$ is $\hat{\mathfrak{g}}_{0}$-module.
Let $\mathcal{P}=\hat{\mathfrak{g}}_{0} \oplus \mathfrak{g}_{-1}$ and we extend the above $\hat{\mathfrak{g}}_{0}$-module structure on M to a \mathcal{P}-module structure by setting $\mathfrak{g}_{-1} M=0$. Next

We define $\operatorname{Lie}(M)$ to be the maximal quotient in $\Gamma(M)$ which belongs to \mathcal{S}.

Our next step is to define Lie: $J-\bmod _{1} \rightarrow \mathcal{S}$.
Let $M \in J-\bmod _{1}$. Let $\mathcal{A}=\operatorname{Lie}(\mathcal{J} \oplus M)$. Then we have an exact sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow \mathcal{A} \xrightarrow{\pi} \mathfrak{g} \rightarrow 0 \tag{4}
\end{equation*}
$$

where N is an abelian Lie algebra and $N_{-1}=M$. N is a $\hat{\mathfrak{g}}$-module, thus $N_{-1}=M$ is $\hat{\mathfrak{g}}_{0}$-module.

Let $\mathcal{P}=\hat{\mathfrak{g}}_{0} \oplus \mathfrak{g}_{-1}$ and we extend the above $\hat{\mathfrak{g}}_{0}$-module structure on M to a \mathcal{P}-module structure by setting $\mathfrak{g}_{-1} M=0$. Next

$$
\Gamma(M)=U(\hat{\mathfrak{g}}) \otimes_{U(\mathcal{P})} M
$$

We define $\operatorname{Lie}(M)$ to be the maximal quotient in $\Gamma(M)$ which belongs to \mathcal{S}.

- Jor \circ Lie is isomorphic to the identity functor in $J-\bmod _{1}$.
- Let $N \in \mathcal{S}$ and $\hat{\mathfrak{g}} N=N$, then the canonical map $\operatorname{Lie}(\operatorname{Jor}(N)) \rightarrow N$ is surjective.
- Let $N \in \mathcal{S}$ and $N^{\hat{\mathfrak{g}}}:=\{x \in N \mid \hat{\mathfrak{g}} x=x\}=0$, then the canonical map $N \rightarrow \operatorname{Lie}(\operatorname{Jor}(N))$ is injective.
- If $M \rightarrow L \rightarrow 0$ is exact in $J-\bmod _{1}$, then $\operatorname{Lie}(M) \rightarrow \operatorname{Lie}(L) \rightarrow 0$ is exact in \mathcal{S}.
\square
- Jor \circ Lie is isomorphic to the identity functor in $J-\bmod _{1}$.
- Let $N \in \mathcal{S}$ and $\hat{\mathfrak{g}} N=N$, then the canonical map $\operatorname{Lie}(\operatorname{Jor}(N)) \rightarrow N$ is surjective.
- Let $N \in \mathcal{S}$ and $N^{\hat{\mathfrak{g}}}:=\{x \in N \mid \hat{\mathfrak{g}} x=x\}=0$, then the canonical map $N \rightarrow \operatorname{Lie}(\operatorname{Jor}(N))$ is injective.
- If $M \rightarrow L \rightarrow 0$ is exact in $J-\bmod _{1}$, then $\operatorname{Lie}(M) \rightarrow \operatorname{Lie}(L) \rightarrow 0$ is exact in \mathcal{S}.

The splitting $J-\bmod _{1} \oplus J-\bmod _{0}$ can not be lifted to the Lie algebra $\hat{\mathfrak{g}}$, since some modules can have non-trivial extensions with trivial modules, thus left and right adjoint of the functor Jor are not isomorphic and the categories \mathcal{S} and $J-\bmod _{1}$ are not equivalent. Still they are close enough and one can describe projective modules, quivers and relations of $J-\bmod _{1}$ in terms of \mathcal{S}.

J	\mathfrak{g}	$\mathcal{S}_{\frac{1}{2}}$	\mathcal{S}
$S_{y m}(\mathbf{k})$	$\mathfrak{s p}_{2 n}$	V	$a d, \Lambda^{2} V$
$M_{n}(\mathbf{k})^{+}$	$\mathfrak{s l}_{2 n}$	V, V^{*}	$a d, S^{2}(V), S^{2}\left(V^{*}\right), \Lambda^{2}(V), \Lambda^{2}\left(V^{*}\right)$
$S_{y m p_{2 n}(\mathbf{k})}$	$\mathfrak{s o}_{4 n}$	V	$a d, S^{2}(V)$
$J_{n}(E, f)$	$\mathfrak{s o}_{n+3}$	Γ	
$n=2 \nu$		spinor	$\Lambda^{i}(V), i=1, \ldots, \nu+1$
$J_{n}(E, f)$	$\mathfrak{s o}_{n+3}$	Γ^{+}, Γ^{-} spinor	$\Lambda^{i}(V), i=1, \ldots, \nu$
$n=2 \nu-1$		$\Lambda^{\nu+1}(V)^{ \pm}$	

Quiver of an abelian category

Let \mathcal{C} be an abelian category with finitely many simple modules such that every object has finite length and every simple object has a projective cover.
Then \mathcal{C} is equivalent to the category of finite-dimensional
A-modules. If L_{1}, \ldots, L_{r} is the set of all up to isomorphism simple objects in \mathcal{C} and P_{1}, \ldots, P_{r} are their projective covers, then A is a pointed algebra which is usually realized as the path algebra of a certain quiver Q with relations.
The vertices

$$
\begin{gathered}
Q_{0}=\left\{\text { simple modules } L_{1}, \ldots, L_{r}\right\} \\
Q_{1}=\left\{\# \text { arrows from vertex } L_{i} \text { to vertex } L_{j} \text { is } \operatorname{dim} \operatorname{Ext}^{1}\left(L_{j}, L_{i}\right)\right\}
\end{gathered}
$$

It is now clear how to describe the quiver Q.

Lemma

Let $\mathfrak{g}=\mathfrak{g}_{s}+\mathfrak{r}$ be the Levi decomposition of \mathfrak{g}. Let L and L^{\prime} be two simple \mathfrak{g}_{s}-modules then $\operatorname{dim} \operatorname{Ext}{ }^{1}\left(L, L^{\prime}\right)$ equals the multiplicity of L^{\prime} in $L \otimes \mathfrak{r}$.

Example

Let $J=M_{n}{ }^{(+)}(\mathbf{k})+S_{y m}$ then its $\operatorname{TKK}(J)=s l_{2 n}+S^{2}(V)$, while
$Q_{\mathcal{S}_{\frac{1}{2}}}(J)$ and $Q_{\mathcal{S}}(J)$ are correspondingly

It is now clear how to describe the quiver Q.

Lemma

Let $\mathfrak{g}=\mathfrak{g}_{s}+\mathfrak{r}$ be the Levi decomposition of \mathfrak{g}. Let L and L^{\prime} be two simple \mathfrak{g}_{s}-modules then $\operatorname{dim} \operatorname{Ext}^{1}\left(L, L^{\prime}\right)$ equals the multiplicity of L^{\prime} in $L \otimes \mathfrak{r}$.

Example

Let $J=M_{n}{ }^{(+)}(\mathbf{k})+S_{y} m_{n}$ then its $\operatorname{TKK}(J)=s l_{2 n}+S^{2}(V)$, while $Q_{\mathcal{S}_{\frac{1}{2}}}(J)$ and $Q_{\mathcal{S}}(J)$ are correspondingly

Example

$$
\mathfrak{g}=\mathfrak{s o}_{2 m+1} \oplus V, m \geq 3
$$

$$
\left.\operatorname{tr} \underset{\underset{\delta_{0}}{-}}{\stackrel{\gamma_{0}}{-}} \geq V \underset{\delta_{1}}{\stackrel{\gamma_{1}}{\rightleftarrows}} \Lambda^{2} V \underset{\delta_{2}}{\underset{\gamma_{2}}{\rightleftarrows}} \cdots \Lambda^{m-1} V \underset{\delta_{m-1}}{\stackrel{\gamma_{m-1}}{\leftrightarrows}} \Lambda^{m} V\right) \gamma_{m}
$$

with the relations

$$
\begin{gathered}
\gamma_{r-1} \gamma_{r}=\delta_{r} \delta_{r-1}=0, \\
\gamma_{r-1} \delta_{r-1}=\delta_{r} \gamma_{r}, \\
\gamma_{m-1} \delta_{m-1}=\gamma_{m}^{2}, \\
\text { for } r=1, \ldots, m-1
\end{gathered}
$$

