# 3-modular representations of finite simple groups as ternary codes 

Bernardo Rodrigues (rodrigues@ukzn.ac.za)

School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal

CIMPA Research School: Algebraic Representation Theory 2015 AIMS, Muizenberg

(19-31 July 2015)

## Symmetry and groups

The symmetries of any object form a group.

## Symmetry and groups

The symmetries of any object form a group.

- Is every group the symmetry group of something?;


## Symmetry and groups

The symmetries of any object form a group.

- Is every group the symmetry group of something?;

This ill-defined question has led to a lot of interesting research.
We have to specify

- whether we consider the group as a permutation group (so the action is given) or as an abstract group;


## Symmetry and groups

The symmetries of any object form a group.

- Is every group the symmetry group of something?;

This ill-defined question has led to a lot of interesting research.
We have to specify

- whether we consider the group as a permutation group (so the action is given) or as an abstract group;
- what kinds of structures we are considering.


## Symmetry and groups

The symmetries of any object form a group.

- Is every group the symmetry group of something?;

This ill-defined question has led to a lot of interesting research.
We have to specify

- whether we consider the group as a permutation group (so the action is given) or as an abstract group;
- what kinds of structures we are considering.


## Permutation group

## As permutation group

## Permutation group

## As permutation group

- Given a permutation group $G$ on a set $\Omega$, is there a structure $M$ on $\Omega$ of some specified type such that $G=\operatorname{Aut}(M)$ ?


## Permutation group

As permutation group

- Given a permutation group $G$ on a set $\Omega$, is there a structure $M$ on $\Omega$ of some specified type such that $G=\operatorname{Aut}(M)$ ?


## As an abstract group

## Permutation group

## As permutation group

- Given a permutation group $G$ on a set $\Omega$, is there a structure $M$ on $\Omega$ of some specified type such that $G=\operatorname{Aut}(M)$ ?


## As an abstract group

- Frucht showed that every abstract group is the automorphism group of some (simple undirected) graph. There are many variations on this theme.


## Permutation group

## As permutation group

- Given a permutation group $G$ on a set $\Omega$, is there a structure $M$ on $\Omega$ of some specified type such that $G=\operatorname{Aut}(M)$ ?


## As an abstract group

- Frucht showed that every abstract group is the automorphism group of some (simple undirected) graph. There are many variations on this theme.


## Finite permutation groups

The study of finite permutation groups has been revolutionised by CFSG (the Classification of Finite Simple Groups):

## Finite permutation groups

The study of finite permutation groups has been revolutionised by CFSG (the Classification of Finite Simple Groups):

Theorem 2.1
A finite simple group is one of the following:

- a cyclic group of prime order;


## Finite permutation groups

The study of finite permutation groups has been revolutionised by CFSG (the Classification of Finite Simple Groups):

Theorem 2.1
A finite simple group is one of the following:

- a cyclic group of prime order;
- an alternating group $A_{n}$, for $n \geq 5$;


## Finite permutation groups

The study of finite permutation groups has been revolutionised by CFSG (the Classification of Finite Simple Groups):

Theorem 2.1
A finite simple group is one of the following:

- a cyclic group of prime order;
- an alternating group $A_{n}$, for $n \geq 5$;
- a group of Lie type, roughly speaking a matrix group of specified type over a finite field modulo scalars;


## Finite permutation groups

The study of finite permutation groups has been revolutionised by CFSG (the Classification of Finite Simple Groups):

Theorem 2.1
A finite simple group is one of the following:

- a cyclic group of prime order;
- an alternating group $A_{n}$, for $n \geq 5$;
- a group of Lie type, roughly speaking a matrix group of specified type over a finite field modulo scalars;
- one of the 26 sporadic groups, whose orders range from 7920 to 808017424794512875886459904961710757005754368 000000000.


## Finite permutation groups

The study of finite permutation groups has been revolutionised by CFSG (the Classification of Finite Simple Groups):

## Theorem 2.1

A finite simple group is one of the following:

- a cyclic group of prime order;
- an alternating group $A_{n}$, for $n \geq 5$;
- a group of Lie type, roughly speaking a matrix group of specified type over a finite field modulo scalars;
- one of the 26 sporadic groups, whose orders range from 7920 to 808017424794512875886459904961710757005754368 000000000.

To apply this theorem, we need to understand these simple groups well!

## A unifying result

In his lectures J Moori mentioned the following result

## Theorem 3.1

Let $G$ be a finite primitive permutation group acting on the set $\Omega$ of size n. Let $\alpha \in \Omega$, and let $\Delta \neq\{\alpha\}$ be an orbit of the stabilizer $\mathcal{G}_{\alpha}$ of $\alpha$. If $\mathcal{B}$ $=\left\{\Delta^{g} \mid g \in G\right\}$ and, given $\delta \in \Delta, \mathcal{E}=\left\{\{\alpha, \delta\}^{g} \mid g \in G\right\}$, then $\mathcal{D}=(\Omega, \mathcal{B})$ forms a symmetric $1-(n,|\Delta|,|\Delta|)$ design. Further, if $\Delta$ is a self-paired orbit of $G_{\alpha}$ then $\Gamma=(\Omega, \mathcal{E})$ is a regular connected graph of valency $|\Delta|$, $\mathcal{D}$ is self-dual, and $G$ acts as an automorphism group on each of these structures, primitive on vertices of the graph, and on points and blocks of the design.
which appeared in
囯 J D Key and J Moori
Designs, codes and graphs from the Janko groups $J_{1}$ and $J_{2}$
J. Combin. Math. and Combin. Comput., 40, 143-159

- The codes constructed using Theorem 3.1 are obtained from transitive symmetric 1-designs or graphs defined by the primitive action of finite group.
- When the degree of the permutation representation is sufficiently large, Theorem 3.1 is not very useful. In some instances, Theorem 3.1 does not give us all codes defined by a given permutation representation of a finite primitive group.
- The codes constructed using Theorem 3.1 are obtained from transitive symmetric 1-designs or graphs defined by the primitive action of finite group.
- When the degree of the permutation representation is sufficiently large, Theorem 3.1 is not very useful. In some instances, Theorem 3.1 does not give us all codes defined by a given permutation representation of a finite primitive group.
- In this talk I want to give an idea of the algebraic representation theory machinery, which turns out to be a more natural approach to coding theory.


## Definition 3.2

Let $\rho: G \longrightarrow G L(n, \mathbb{F})$ be a representation of $G$ on a vector space $V=\mathbb{F}^{n}$. Let $W \subseteq V$ be a subspace of $V$ of dimension $n$ such that $\rho_{g}(W) \subseteq W$ for all $g \in G$, then the map $G \rightarrow G L(n, \mathbb{F})$ given by $g \longmapsto \rho(g) \mid W$ is a representation of $G$ called a subrepresentation of $\rho$. The subspace $W$ is then said to be $G$-invariant or a $G$-subspace. Every representation has $\{0\}$ and $V$ as $G$-invariant subspaces. These two subspaces are called trivial or improper subspaces.

## Definition 3.3

A representation $\rho: G \longrightarrow G L(n, \mathbb{F})$ of $G$ with representation module $V$ is called reducible if there exists a proper non-zero $G$-subspace $U$ of $V$ and it is said to be irreducible if the only $G$-subspaces of $V$ are the trivial ones.

## Remark 3.4

The representation module $V$ of an irreducible representation is called simple and the $\rho$ invariant subspaces of a representation module $V$ are called submodules of $V$.

## Definition 3.5

Let $V$ be an $\mathbb{F} G$-module. $V$ is said to be decomposable if it can be written as a direct sum of two $\mathbb{F G}$-submodules, i.e., there exist submodules $U$ and $W$ of $V$ such that $V=U \oplus W$. If no such submodules for $V$ exist, $V$ is called indecomposable.If $V$ can be written as a direct sum of irreducible submodules, then $V$ is called completely reducible or semisimple.

## Remark 3.6

A completely reducible module, implies a decomposable module, which implies a reducible one, but the converse is not true in general.

## Permutation Module

## Definition 4.1

If $\Omega$ is a finite $G$-set and $\mathbb{F}$ a commutative ring we define $\mathbb{F} G$ to be the free $\mathbb{F}$-module with basis $\Omega$ and consider it as a $\mathbb{F} \Omega$-module by extending the action of $G$ on $\Omega$ to a $\mathbb{F}$-linear action of $\mathbb{F} G$ on $\mathbb{F} \Omega$. Thus

$$
\sum_{g \in G} a_{g} g \cdot \sum_{w \in \Omega} b_{w} w=\sum_{g \in G} \sum_{w \in \Omega} a_{g} b_{w}(g \cdot w), \text { for } a_{g}, b_{w} \in \mathbb{F} .
$$

$\mathbb{F} \Omega$ is called the permutation module corresponding to $\Omega$ (and $\mathbb{F}$ ).
The corresponding representation $\delta_{\Omega}: \mathbb{F} G \longrightarrow$ End $\mathbb{F} G$ or its restriction $G$ is called a permutation representation of $\mathbb{F}$ or $G$.

Theorem 4.2
Let $G L(n, \mathbb{F})$ denote the general linear group over a field $\mathbb{F}$. If $G$ is a finite group of order $n$, then $G$ can be embedded in $G L(n, \mathbb{F})$, that is $G$ is isomorphic to a subgroup of $G L(n, \mathbb{F})$.

Observe that for any finite $G$-set $\Omega$ and any group element $g \in G$ the matrix $\left[\delta_{\Omega}(g)\right]_{\Omega}$ is a permutation matrix, that is, it has exactly one non-zero entry in each row and column, which is, in fact unity.
$\left[\delta_{\Omega}(g)\right]_{\Omega}$ is an $n \times n$ matrix with rows and columns indexed by $\Omega$, having $(i, j)$ entry

$$
\left[\delta_{\Omega}(g)\right]_{(i, j)}= \begin{cases}1, & \text { if } g(i)=j ; \\ 0, & \text { otherwise }\end{cases}
$$

The map $\delta_{\Omega}$ is a homomorphism from $G$ into $G L(n, \mathbb{F})$.

## Example 4.3

The symmetric group $S_{n}$ acts on an $n$-element set
$\Omega_{n}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ by $\sigma \cdot w_{i}=w_{\sigma(i)}$ and hence has a natural permutation representation of degree $n$. For $n=3$ the matrices of this representation with respect to the basis $\Omega_{3}$ are given by

$$
\text { (1 2) } \mapsto\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \text { (2 3) } \mapsto\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
$$

Note that $S_{3}$ is generated by (12) and (23) so that the representation is completely determined by these two matrices.

## Background - Graphs

- A graph $\Gamma=(V, E)$, consists of a finite set of vertices $V$ together with a set of edges $E$, where an edge is a subset of the vertex set of cardinality 2.
- The valency or degree of a vertex is the number of edges containing that vertex.
- A graph is regular if all the vertices have the same valency; a regular graph is strongly regular of type $(n, k, \lambda, \mu)$ if it has $n$ vertices, valency $k$, and if any two adjacent vertices are together adjacent to $\lambda$ vertices, while any two non-adjacent vertices are together adjacent to $\mu$ vertices.
- The adjacency matrix $A(\Gamma)$ of $\Gamma$ is the $n \times n$ matrix with

$$
(i, j)= \begin{cases}1 & \text { if } x_{i} \text { and } x_{j} \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}
$$

## Graphs

- If $x$ is a vertex of $\Gamma$ (with $\Gamma$ a strongly regular graph) then the neighbourhood graph $\Gamma(x)$ with respect to $x$ is the subgraph of $\Gamma$ which is induced by all vertices that are adjacent to $x$.
- The neighbourhood graph of a vertex $x$ of a strongly regular graph $\Gamma$ is also called the first subconstituent of $\Gamma$.
- The subgraph of $\Gamma$ induced on all vertices of $\Gamma$ which are not adjacent to (and different from) $x$, is called a second subconstituent.


## Centralizer Algebra

## Definition 5.1

The centraliser algebra of $G$ is the set of all $n \times n$ matrices which commute with all the matrices $\left[\delta_{\Omega}(g)\right]_{\Omega}$ for $g \in G$.

- The centralizer ring of the permutation group $(G, \Omega)$ is the ring of all integer-valued matrices which commute with every permutation matrix $M(g), g \in G$, i.e.,

$$
V_{\mathbb{Z}}(G, \Omega)=\left\{A \in M_{n}(\mathbb{Z}) \mid A M(g)=M(g) A \forall g \in(G, \Omega)\right\} .
$$

- The centralizer algebra of the permutation group $(G, \Omega)$ is the algebra of all complex-valued matrices which commute with every permutation matrix $M(g), g \in G$, i.e.,

$$
V_{\mathbb{C}}(G, \Omega)=\left\{A \in M_{n}(\mathbb{C}) \mid A M(g)=M(g) A \forall g \in(G, \Omega)\right\}
$$

## Cycle $C_{4}$

## Example 1



4

- $\operatorname{Aut}\left(C_{4}\right)=D_{4}$, dihedral group of order 8 .
- $D_{4}=\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\rangle$

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right], M\left(\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

$$
M((13))=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## Centralizer Algebra

## Theorem 5.2

Let $\mathcal{V}=V_{\mathbb{F}}(G, \Omega)$ be the centralizer algebra of the permutation group $(G, \Omega)$. Then

- $\mathcal{V}$ is a vector space over $\mathbb{F}$.
- Let $2-\operatorname{orb}(G, \Omega)$ be the set of orbits of $G_{\alpha}$ on $\Omega$, ie, $2-\operatorname{orb}(G, \Omega)=\left\{\Phi_{1}, \Phi_{2}, \ldots, \Phi_{r}\right\}, \Gamma_{i}=\left(\Omega, \Phi_{i}\right)$, the oriented graph defined as follows: a vertex $\alpha$ is connected with a vertex $\beta$ if $\beta \in \Phi(\alpha)$ and $A_{i}=A\left(\Gamma_{i}\right)$, for $i \in\{1,2, \ldots r\}$ the adjacency (incidence) matrices with respect to every orbit, then the matrices $A_{1}, A_{2}, \ldots, A_{r}$ form a basis for the vector space $\mathcal{V}$.
- $\operatorname{dim}(\mathcal{V})=r=\operatorname{rank}(G, \Omega)$


## Remark 5.3

- Each $A_{i}$ in Theorem 5.2 is the adjacency matrix $A\left(\Gamma_{i}\right)$ of the orbital graph $\Gamma_{i}=\left(\Omega, \Phi_{i}\right)$ of an orbital $\Phi_{i} \subset \Omega \times \Omega$ of $G$.
- The dimension of the incidence matrices is $\left|G: G_{\alpha}\right|=|\Omega|=n$;
- When $n$ is large enough, working with the incidence matrices becomes difficult;


## Definition 5.4

The intersection matrix of the permutation representation of $G$ is the $r \times r$ matrix $M_{k}=\left(a_{i j}^{k}\right)$ defined with respect to the orbit $\Phi_{k}$ as follows:

$$
a_{i j}^{k}=\left|\Phi_{k}(\beta) \cap \Phi_{i}(\alpha)\right|, \beta \in \Phi_{j}(\alpha) .
$$

Equivalently

## Definition 5.5

The intersection matrix of the permutation representation of $G$ is the $r \times r$ matrix $M_{k}=\left(a_{i j}^{k}\right)$ defined with respect to the orbit $\Phi_{k}$ as follows: $A_{k} \cdot A_{i}=\sum_{j=1}^{r} a_{i j}^{k} \cdot A_{j}$ where $A_{s}$ are incidence matrices.

This leads us to

## Remark 5.6

- Observe that we have obtained $r \times r$ intersection matrices $M_{1}, M_{2}, \ldots, M_{r}$
- The matrices $M_{i}$ for $1 \leq i \leq r$ form the base of an algebra isomorphic to the centralizer algebra of $G$ :, ie, $\left\langle A_{1}, A_{2}, \ldots, A_{r}\right\rangle \cong\left\langle M_{1}, M_{2}, \ldots, M_{r}\right\rangle$.
- Matrix algebra $V(G, \Omega)$ consists of matrices of order $n$.
- Intersection Algebra $P(G, \Omega)$ consists of matrices of order $r$.

This material can be found in

P.J. Cameron<br>Permutation Groups<br>London Mathematical Society Student Texts, 45, Cambridge University Press, Cambridge, 1999.

## Remark 5.7

Using the relation between incidence and intersection matrices we obtain the following diagram for $\Gamma_{i}=\left(\Omega, \Phi_{i}\right)$ :

- the vertex of the graph is divided into $r$ orbits; the number of vertices in them is $l_{i}$ where $1 \leq i \leq r$; and $l_{i}=\left|\Gamma_{i}\right|$
- each vertex of the orbit $\Phi_{i}$ has $a_{j i}$ outgoing edges to the vertices on $\Phi_{j}$ where $1 \leq i, j \leq r$. In the case of rank-3 groups we have the following matrix:


## Remark 5.8

$$
M=\left[\begin{array}{ccc}
0 & 1 & 0 \\
l_{2} & a_{22} & a_{23} \\
0 & a_{32} & a_{33}
\end{array}\right]
$$

## The group HS

- Consider $G$ to be the simple group HS of Higman and Sims

| No. | Max. sub. | Deg. | $\#$ | length |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $M_{22}$ | 100 | 3 | 77 | 22 |  |  |
| 2 | $U_{3}(5): 2$ | 176 | 2 | 175 |  |  |  |
| 3 | $U_{3}(5): 2$ | 176 | 2 | 175 |  |  |  |
| 4 | $L_{3}(4): 2_{1}$ | 1100 | 5 | 672 | 280 | 105 | 42 |
| 5 | $S_{8}$ | 1100 | 5 | 630 | 336 | 105 | 28 |

Table: Maximal subgroups of HS of degree $\leq 1100$

## The Higman-Sims graph

- Observe from the preceding Table that there is a single class of maximal subgroups of HS of index 100.
- The stabilizer of a point is a maximal subgroup isomorphic to the Mathieu group $M_{22}$.
- The group HS acts as a rank-3 primitive group on the cosets of $M_{22}$ with orbits of lengths 1,22 , and 77 respectively.
- These orbits will be denoted $\Phi_{0}=\{\mathcal{L}\}, \Phi_{1}$ and $\Phi_{2}$
- We consider the structures obtained from $\Phi_{1}$, and from $\Phi_{2}$


## The Higman-Sims graph

- Taking the images of the orbit of $\Phi_{1}$ under HS we form a graph having the 100 vertices (points), where two vertices $x$ and $y$ are adjacent if $y \in \Phi_{1}$, ie. the orbit of length 22 of the stabilizer of $x$. This action defines a strongly regular graph with parameters (100, 22, 0, 6) known as the Higman-Sims graph. This graph will be denoted HiS
- HiS has spectrum $22^{1},(2)^{77},(-8)^{22}$ and its complement denoted HiS, has parameters $(100,77,60,56)$ and spectrum $77^{1}, 7^{22},(-3)^{77}$.
- The automorphism group of HiS is HS:2. This group acts as a rank-3 group with vertex stabilizer isomorphic to $\mathrm{M}_{22}: 2$.


## Remark 6.1

- Recall that $\mathbb{F} \Omega$ : is defined by the action of HS on the cosets of $M_{22}$
- the group HS has orbitals $\Phi_{0}, \Phi_{1}, \Phi_{2}$ where $\left|\Phi_{i}(\alpha)\right|=1,22,77$ respectively, with $0 \leq i \leq 2$.
- Let $A_{0}, A_{1}, A_{2}$ be the matrices of the centralizer algebra of $(G, \Omega)$
- Let $a_{i}$ denote the endomorphism of the permutation module $\mathbb{F} \Omega$ associated with the matrix $A_{i}$ or the orbital graph $\Phi_{i}$.
- Write $\Phi=\Phi_{1}$ and $a=a_{1}$.
- The endomorphism algebra $E(\mathbb{F} \Omega)=E n d_{F G}(\mathbb{F} \Omega)$ has basis $\left(a_{0}, a_{1}, a_{2}\right)$ with $a_{0}=i d_{F \Omega}$.


## Definition 6.2

If $v$ and $w$ are vertices of a connected strongly regular graph $\Gamma$ such that $d(v, w)=i, i=0,1,2$, then the number $p_{i j}$ of neighbours of $w$ whose distance from $v$ is $j, j=0,1,2$, are the intersection numbers of $\Gamma$. The $3 \times 3$-matrix with entries $a_{i j}, i, j=0,1,2$, is called the intersection matrix of $\Gamma$.

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
k & \lambda & \mu \\
0 & k-\lambda-1 & k-\mu
\end{array}\right]
$$

The structure of the Higman-Sims graph gives the following values:

$$
a_{0}=\boldsymbol{I}_{3}, \quad a_{1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
22 & 0 & 6 \\
0 & 21 & 16
\end{array}\right], \quad a_{2}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 21 & 16 \\
77 & 56 & 60
\end{array}\right]
$$

are the intersection matrices of the $\operatorname{Graph}\left(\Omega, \Phi_{i}\right)$

## Submodule structure of $\mathbb{F}_{3} \Omega$

| $\operatorname{dim}$ | 0 | 1 | 22 | 23 | 77 | 78 | 99 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | $\cdot$ | 1 | . | 1 | . | 1 | . | 1 |
| 22 | $\cdot$ | $\cdot$ | 1 | 1 | . | . | 1 | 1 |
| 23 | $\cdot$ | $\cdot$ | . | 1 | . | . | . | 1 |
| 77 | $\cdot$ | $\cdot$ | . | . | 1 | 1 | 1 | 1 |
| 78 | . | . | . | . | . | 1 | . | 1 |
| 99 | $\cdot$ | $\cdot$ | . | . | . | . | 1 | 1 |
| 100 | . | . | . | . | . | . | . | 1 |

Table: Upper triangular part of the incidence matrix of the poset of submodules of $\mathbb{F}_{3} \Omega=\mathbb{F}_{3}{ }^{100 \times 1}$

## The ternary codes of the 100-dimensional module

## Proposition 6.3

If $F=\mathbb{F}_{3}$ then the following hold:
(a) $F \Omega$ has precisely the following endo-submodules $M_{i}$ with $\operatorname{dim} M_{i}=i$.

$$
\begin{aligned}
M_{100} & =F \Omega, M_{0}=0, M_{99}=\operatorname{Ker}\left(a_{0}+a_{1}+a_{2}\right) \\
M_{1} & =\operatorname{Im}\left(a_{0}+a_{1}+a_{2}\right)
\end{aligned}
$$

Set $M_{23}=\operatorname{Ker}\left(a_{2}\right)$, and $M_{23}{ }^{\perp}=M_{77}=\operatorname{Im}\left(a_{2}\right)$. The submodules given in (a) form a series $M_{0}<M_{1}<M_{23}<M_{100}$. (b) For every $v \in E(\mathbb{F} \Omega)$ we have $\operatorname{Ker}(v)=\operatorname{Im}(v)^{\perp}$, so that $M_{i}^{\perp}=M_{100-i}$ for the endo-submodules.
The dimension of the composition factors in this composition series are 1,22 , and 77 all of which are irreducible submodules.

## The ternary codes of the 100-dimensional module

## Proposition 6.4

(c) $M_{22}=\left\langle\left\{u \mid u \in M_{23}\right.\right.$ and $\left.\left.\operatorname{wt}(u)=30\right\}\right\rangle$ is an $\mathbb{F} G$-submodule of co-dimension 1 in $\mathrm{M}_{23}$.
Set $M_{78}=M_{22}{ }^{\perp}$. Then $\operatorname{dim}\left(M_{i}\right)=i$ for $i \in\{22,78\}$ and

$$
0=M_{0}<M_{22}<M_{23}<M_{100}=\mathbb{F} \Omega
$$

is a composition series of $F \Omega$ as an $\mathbb{F} G$-module. The dimension of the composition factors in this composition series are 22, 1, and 77 all of which are irreducible submodules.
(d) $F \Omega$ has exactly one $\mathbb{F}$ G-submodule of dimension 77. We have $M_{77}<M_{78}<M_{99}<M_{100}$.
We have

$$
0=M_{0}<M_{77}<M_{78}<M_{99}<M_{100}=F \Omega
$$

is a composition series of $F \Omega$ as an $\mathbb{F} G$-module.
The dimension of the composition factors in this composition series are 77, 1, 21 and 1.
B. G. Rodrigues (UKZN)

## The ternary codes of the 100-dimensional module

## Proposition 6.5

(e) $\left\{M_{0}, M_{1}, M_{22}, M_{23}, M_{77}, M_{78}, M_{99}, M_{100}\right\}$ is the complete set of $\mathbb{F} G$-submodules of $F \Omega$.
(f) The action of $G$ on $\mathbb{F} \Omega$ extends in a natural way to $\operatorname{Aut}(G)$. Every $M_{i}$ is invariant under $\bar{G}=\operatorname{Aut}(G)$. In the case of arbitrary fields $\mathbb{F} \supseteq \mathbb{F}_{3}$ we have essentially the same occurrence, since $\mathbb{F} \Omega \cong_{\mathbb{F} \otimes \mathbb{F}_{3}} \mathbb{F}_{3} \Omega$ and almost all completely reducible factors are multiplicity-free.

## The codes from a rep of degree 100 under $G$

> Theorem 6.6
> Let $G=$ HS be the Higman-Sims simple in its rank-3 representations on $\Omega$ of degree 100 . Then every linear code $C_{3}\left(M_{i}\right)$ over the field $\mathbb{F}=G F(3)$ admitting $G$ is obtained up to isomorphism from one of the $\mathbb{F} G$-submodules of the permutation module $\mathbb{F} \Omega$ which are given in Proposition 6.3.

## Results

- The results we will see soon aim to provide a distinguishing property that characterizes the codes of these classes of graphs. It turns out that these codes form part of a class the interesting codes known as linear complementary dual codes, defined by (Massey' 92). See

通 J. Massey<br>Linear codes with complementary duals<br>Disc. Math., 106/107 (1992), 337-342.

- A linear code with a complementary dual is a linear code $C$ whose dual $C^{\perp}$ satisfies $C \cap C^{\perp}=\{0\}$
- (Massey' 92) has shown that asymptotically good codes exist and later (Sendrier, 2004)

E N. Sendrier.

Linear codes with complementary duals meet the Gilbert-Varshamov bound Disc. Math., 285 (2004), 345-347.
showed that linear codes with complementary dual meet the Gilbert-Varshamov bound in the strong sense.

## Results

## Proposition 6.7

(i) The code $C_{3}(\overline{\mathrm{HiS}})$ is a $[100,23,23]_{3}$,
(ii) The dual code $C_{3}(\overline{\mathrm{HiS}})^{\perp}$ is a $[100,77,8]_{3}$ linear code with a complementary dual and 173250 words of weight 8.
(iii) $\mathbf{1} \in C_{3}(\overline{\mathrm{HiS}}), C_{3}(\overline{\mathrm{HiS}}) \oplus C_{3}(\overline{\mathrm{HiS}})^{\perp}=\mathbb{F}_{3}^{100}$ and $\operatorname{Aut}(\overline{\mathrm{HiS}})=\operatorname{Aut}\left(\mathrm{C}_{3}(\overline{\mathrm{HiS}})\right) \cong \mathrm{HS}: 2$.
(iv) $C_{3}(\overline{\mathrm{HiS}})^{\perp}$ is the unique $\mathbb{F}_{3}$-module on which HS and $\mathrm{HS}: 2$ act irreducibly

## Sketch of the proof

## Proof:

- The 3-rank of $\overline{\mathrm{HiS}}$ (i.e, the dimension of $C_{3}(\overline{\mathrm{HS}})$ over $\mathbb{F}_{3}$ ) can be deduced readily by using the spectrum of the graph.
- Recall that the eigenvalues of an adjacency matrix $A$ of $\overline{\mathrm{HiS}}$ are $\theta_{0}=77, \theta_{1}=7$, and $\theta_{2}=-3$ with corresponding multiplicities $f_{0}=1, f_{1}=22$ and $f_{2}=77$. From (Brower and van Eijl, 92)
A. E. Brouwer and C. J. van Eijl

On the p-rank of the adjacency matrices of strongly regular graphs. J. Algebraic Combin. 1 (1992), 329-346.
we obtain an upper bound on the 3-rank of $\overline{\mathrm{HiS}}$, namely that $\operatorname{rank}_{3}(\overline{\mathrm{HiS}}) \leq \min \left(f_{1}+1, f_{2}+1\right)=23$.

- Now, since $\overline{H i S}$ contains the 77-point strongly regular (77, 16, 0, 4) graph as a second subconstituent, we have $\operatorname{rank}_{3}(\overline{\mathrm{HiS}})>21$.


## Sketch of the proof

- Now, from $\operatorname{rank}_{3}(\overline{\mathrm{HiS}})$ odd, we must have that $\operatorname{rank}_{3}(\overline{\mathrm{HiS}})$ equals 23, and the assertions follows.
- That $\mathbf{1} \in C_{3}(\overline{\mathrm{HiS}})$ follows since the sum (modulo 3 ) of all rows of a generator matrix $G$ of $C$ is the all-ones vector.
- The dimension of the hull is zero, we have $\operatorname{Hull}\left(C_{3}(\overline{\mathrm{HiS}})\right)=\varnothing$, so we obtain $C_{3}(\overline{\mathrm{HiS}}) \oplus C_{3}(\overline{\mathrm{HiS}})^{\perp}=\mathbb{F}_{3}^{100}$ as claimed.
- From the Brauer characters in (Jansen et al, 95)

國 C. Jansen, K. Lux, R. Parker, and R. Wilson.
An Atlas of Brauer Characters
Oxford: Oxford Scientific Publications, Clarendon Press, 1995.
we know that the irreducible 77-dimensional $\mathbb{F}_{3}$-representation is unique.

- It follows now that $C_{3}(\overline{\mathrm{HiS}})^{\perp}$ is the unique $\mathbb{F}_{3}$-module on which HS and HS:2 act irreducibly.


## Sketch of the proof

TABLE 2: Partial weight distribution of $C_{3}(\overline{\mathrm{HiS}})$

| $l$ | $A_{l}$ | $l$ | $A_{l}$ |
| :--- | ---: | :--- | ---: |
| 0 | 1 | 42 | 2200 |
| 23 | 200 | 43 | 259600 |
| 30 | 2200 | 44 | 824100 |
| 34 | 30100 | $\vdots$ | $\vdots$ |
| 36 | 8250 | 98 | 2200 |
| 40 | 38500 | 100 | 906 |

## Geometric description of some classes of codewords

## Remark 6.8

(i) The words of weight 23 in $C_{\text {His }}$ have a geometric description, i.e., they are the incidence vectors of the rows of the adjacency matrix of $\overline{\mathrm{HiS}}$ and their scalar multiples.
(ii) The dual code $C_{\text {His }}^{\perp}$ has minimum distance 6 which coincides with the known record distance for the parameters [100, 77] (this follows from Grassl, 06)
(iii) Under the action of $\operatorname{Aut}\left(C_{\text {HiS }}\right)$ the set of codewords of weight 23 splits into two orbits of sizes 100 each.
(iv) The stabilizers of these orbits are maximal subgroups of $H S$ and of $\operatorname{Aut}\left(C_{\text {His }}\right)$ of order 443520 and 887040 isomorphic with $M_{22}$ and $M_{22}$ : 2 respectively.

## A question of Lux and Pahlings

A question in (Lux and Pahlings, 2010) requires one to show that the permutation module of Higman-Sims groups of dimension 100 is the direct sum of three absolutely irreducible modules of dimensions 1, 22 and 77 respectively.

- The next result shows that the words of weight 30 span a subcode of codimension 1 in $C_{3}(\overline{\mathrm{HiS}})$,
- In addition we show that this is the smallest and unique irreducible $\mathbb{F}_{3}$-module invariant under HS and HS:2.
- Moreover, we show that $\mathbb{F}_{3}^{100}=\langle 1\rangle \oplus \mathcal{L} \oplus \mathcal{K}$, where $\langle 1\rangle, \mathcal{L}$ and $\mathcal{K}$ are absolutely irreducible modules of dimensions 1, 22 and 77.


## A problem of Lux and Pahlings

## Proposition 6.9

(i) The codewords in $C_{3}(\overline{\mathrm{HiS}})$ of weight 30 span a code $\mathcal{L}$ with parameters $[100,22,30]_{3}$.
(ii) The dual code $\mathcal{L}^{\perp}$ is a $[100,78,8]_{3}$ with 189200 codewords of weight 8.
(iii) $\mathcal{L}$ is the smallest and also unique irreducible $\mathbb{F}_{3}$-module invariant under HS and $\mathcal{L}^{\perp}=\langle 1\rangle \oplus \mathcal{K}$ where $\mathcal{L} \cong C_{3}(\overline{\mathrm{HiS}})^{\perp}$.
(iv) $\operatorname{Aut}(\mathcal{L}) \cong \mathrm{HS}: 2$ and $C_{3}(\overline{\mathrm{HiS}}) \oplus C_{3}(\overline{\mathrm{HiS}})^{\perp}=\langle 1\rangle \oplus \mathcal{L} \oplus \mathcal{K}=\mathbb{F}_{3}{ }^{100}$.

## A problem of Lux and Pahlings

## Remark 6.10

(i) $\mathcal{L}^{\perp}$ is a $[100,78]_{3}$ code
(ii) $\mathcal{L}^{\perp}$ has minimum distance 8 which coincides with the known record distance for the parameters (this follows from Grassl, 06)
(iii) $\mathcal{L}$ has parameters $[100,22,30]_{3}$
(iv) 22 is the smallest dimension for an irreducible non-trivial $\mathbb{F}_{3}$-module invariant under HS.

## Decoding using the codes $\mathcal{L}^{\perp}$

- The rows of the adjacency matrices of HiS can be used as orthogonal parity checks that allow majority decoding of $\mathcal{L}^{\perp}$ up to its full error-correcting capacity.

The following proposition can now be proved

## Proposition 6.11

The code $\mathcal{L}^{\perp}$ can correct up to 3 errors by majority decoding.
Proof: It follows from Theorem 2.1 of
園 V D Tonchev
Error-correcting codes from graphs. Discrete Math. 257 (2002), no. 2-3, 549-557.
since for HiS we have $\frac{k+\max (\lambda, \mu)-1}{2 \cdot \max (\lambda, \mu)}=\left\lfloor\frac{22+6-1}{2 \cdot 6}\right\rfloor=3$.

## Some interesting problems

## Problem 1

Let $\mathbb{F}$ an algebraically closed field of odd characteristic $I$. Let $G$ be either $O_{2 n}^{ \pm}(2)$ with $n \geq 3$ or $U_{m}(2)$ for $m \geq 4$ and $P$ be the set of nonsingular points of its standard module. Then the structure of the $\mathbb{F} G$-permutation module $\mathbb{F} P$ of $G$ acting naturally on $P$ is known. The socle series, submodule lattices, and dimensions of composition factors are determined by (Hall and Nguyen) in

> J I Hall and H N Nguyen
> The structure of rank-3 permutation modules for $\mathrm{O}_{2 n}^{ \pm}(2)$ and $U_{m}(2)$ acting on nonsingular points.
> J. Algebra, 333 (2011), 295-317.

Describe the properties of the codes associated to these modules.

## Thank you for your presence !!!!

