Higher Sugawara operators

Alexander Molev

University of Sydney

Plan of the talk

Plan of the talk

Casimir elements for the classical Lie algebras from the Schur–Weyl duality.

Plan of the talk

- Casimir elements for the classical Lie algebras from the Schur–Weyl duality.
- Affine Kac–Moody algebras: center at the critical level.

Let \mathfrak{S}_m denote the group of permutations of the set $\{1,\ldots,m\}$.

Let \mathfrak{S}_m denote the group of permutations of the set $\{1,\ldots,m\}$.

Let s_{ab} denote the transposition (a, b) for a < b.

Let \mathfrak{S}_m denote the group of permutations of the set $\{1,\ldots,m\}$.

Let s_{ab} denote the transposition (a, b) for a < b.

The symmetrizer is the element

$$h^{(m)} = \frac{1}{m!} \sum_{s \in \mathfrak{S}_m} s \in \mathbb{C}[\mathfrak{S}_m].$$

Let \mathfrak{S}_m denote the group of permutations of the set $\{1,\ldots,m\}$.

Let s_{ab} denote the transposition (a, b) for a < b.

The symmetrizer is the element

$$h^{(m)} = \frac{1}{m!} \sum_{s \in \mathfrak{S}_m} s \in \mathbb{C}[\mathfrak{S}_m].$$

The anti-symmetrizer is the element

$$a^{(m)} = \frac{1}{m!} \sum_{s \in \mathfrak{S}} \operatorname{sgn} s \cdot s \in \mathbb{C}[\mathfrak{S}_m].$$

Theorem [Jucys 1966].

The following factorization formulas hold:

$$h^{(m)} = \frac{1}{m!} \prod_{1 \leq a < b \leq m} \left(1 + \frac{s_{ab}}{b - a} \right),$$

Theorem [Jucys 1966].

The following factorization formulas hold:

$$h^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{s_{ab}}{b - a} \right),$$

$$a^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 - \frac{s_{ab}}{b - a} \right),$$

Theorem [Jucys 1966].

The following factorization formulas hold:

$$h^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{s_{ab}}{b - a} \right),$$

$$a^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 - \frac{s_{ab}}{b - a} \right),$$

where both products are taken in the lexicographical order on the set of pairs (a, b).

The symmetric group \mathfrak{S}_m acts in the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_m$$

by the rule

$$s_{ab} \mapsto P_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

The symmetric group \mathfrak{S}_m acts in the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_m$$

by the rule

$$s_{ab} \mapsto P_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

where P_{ab} is the permutation operator

$$P_{ab} = \sum_{i,j=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{ji} \otimes 1^{\otimes (m-b)}$$

The symmetric group \mathfrak{S}_m acts in the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_m$$

by the rule

$$s_{ab} \mapsto P_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

where P_{ab} is the permutation operator

$$P_{ab} = \sum_{i,i=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{ji} \otimes 1^{\otimes (m-b)}$$

and $e_{ii} \in \operatorname{End} \mathbb{C}^N$ are the matrix units.

The symmetrizer and anti-symmetrizer act as the operators

$$H^{(m)} = \frac{1}{m!} \prod_{1 \leqslant a < b \leqslant m} \left(1 + \frac{P_{ab}}{b - a} \right)$$

The symmetrizer and anti-symmetrizer act as the operators

$$H^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} \right)$$

and

$$A^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 - \frac{P_{ab}}{b - a} \right)$$

The symmetrizer and anti-symmetrizer act as the operators

$$H^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} \right)$$

and

$$A^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 - \frac{P_{ab}}{b - a} \right)$$

which we regard as elements of the algebra

$$\operatorname{End} (\mathbb{C}^N)^{\otimes m} \cong \underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m}.$$

We let E_{ij} be the standard basis elements of \mathfrak{gl}_N .

We let E_{ij} be the standard basis elements of \mathfrak{gl}_N .

The universal enveloping algebra $U(\mathfrak{gl}_N)$ is the associative algebra generated by the N^2 elements E_{ij} subject to the defining relations

$$E_{ij}E_{kl}-E_{kl}E_{ij}=\delta_{kj}E_{il}-\delta_{il}E_{kl}.$$

We let E_{ij} be the standard basis elements of \mathfrak{gl}_N .

The universal enveloping algebra $U(\mathfrak{gl}_N)$ is the associative algebra generated by the N^2 elements E_{ij} subject to the defining relations

$$E_{ij} E_{kl} - E_{kl} E_{ij} = \delta_{kj} E_{il} - \delta_{il} E_{kl}.$$

We will combine the generators into the matrix $E=\left[E_{ij}\right]$ which will also be regarded as the element

$$E = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}).$$

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_m \otimes \operatorname{U}(\mathfrak{gl}_N)$$

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{U}(\mathfrak{gl}_N)$$

and for a = 1, ..., m introduce its elements by

$$E_a = \sum_{i,j=1}^N 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (m-a)} \otimes E_{ij}.$$

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{U}(\mathfrak{gl}_N)$$

and for a = 1, ..., m introduce its elements by

$$E_a = \sum_{i,j=1}^N 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (m-a)} \otimes E_{ij}.$$

Note the property $P_{ab}E_a = E_b P_{ab}$.

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{U}(\mathfrak{gl}_N)$$

and for a = 1, ..., m introduce its elements by

$$E_a = \sum_{i,j=1}^N 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (m-a)} \otimes E_{ij}.$$

Note the property $P_{ab}E_a = E_b P_{ab}$.

Key Lemma. The defining relations of $U(\mathfrak{gl}_N)$ are equivalent to the single relation

$$E_1E_2 - E_2E_1 = (E_1 - E_2)P_{12}.$$

The trace is the linear map $\operatorname{End} \mathbb{C}^N \to \mathbb{C}$ defined by $\operatorname{tr}: e_{ij} \mapsto \delta_{ij}$.

The trace is the linear map $\operatorname{End} \mathbb{C}^N \to \mathbb{C}$ defined by $\operatorname{tr}: e_{ij} \mapsto \delta_{ii}$.

The partial trace tr_a acts on the a-th copy of $\operatorname{End} \mathbb{C}^N$ in

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{U}(\mathfrak{gl}_N).$$

The trace is the linear map $\operatorname{End} \mathbb{C}^N \to \mathbb{C}$ defined by $\operatorname{tr}: e_{ij} \mapsto \delta_{ii}$.

The partial trace tr_a acts on the a-th copy of $\operatorname{End} \mathbb{C}^N$ in

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{U}(\mathfrak{gl}_N).$$

Theorem. For any $s \in \mathbb{C}[\mathfrak{S}_m]$ and $u_1, \ldots, u_m \in \mathbb{C}$ the element

$$\operatorname{tr}_{1,\ldots,m} S(u_1+E_1)\ldots(u_m+E_m)$$

belongs to the center $Z(\mathfrak{gl}_N)$ of $U(\mathfrak{gl}_N)$.

Proof. Consider the tensor product

$$\operatorname{End} \mathbb{C}^N \otimes \operatorname{End} (\mathbb{C}^N)^{\otimes m} \otimes \operatorname{U}(\mathfrak{gl}_N)$$

with the copies of the algebra $\operatorname{End} \mathbb{C}^N$ labelled by $0, 1, \ldots, m$.

Proof. Consider the tensor product

$$\operatorname{End} \mathbb{C}^N \otimes \operatorname{End} (\mathbb{C}^N)^{\otimes m} \otimes \operatorname{U}(\mathfrak{gl}_N)$$

with the copies of the algebra $\operatorname{End} \mathbb{C}^N$ labelled by $0, 1, \ldots, m$.

We will show that

$$\left[E_0,\operatorname{tr}_{1,\ldots,m}S\left(u_1+E_1\right)\ldots\left(u_m+E_m\right)\right]=0.$$

Proof. Consider the tensor product

$$\operatorname{End} \mathbb{C}^N \otimes \operatorname{End} (\mathbb{C}^N)^{\otimes m} \otimes \operatorname{U}(\mathfrak{gl}_N)$$

with the copies of the algebra $\operatorname{End} \mathbb{C}^N$ labelled by $0, 1, \ldots, m$.

We will show that

$$\left[E_0,\operatorname{tr}_{1,\ldots,m}S\left(u_1+E_1\right)\ldots\left(u_m+E_m\right)\right]=0.$$

By the Key Lemma,

$$[E_0, u_a + E_a] = P_{0a}(u_a + E_a) - (u_a + E_a)P_{0a},$$

where we used the relations $P_{ab}E_b = E_aP_{ab}$.

Hence

$$[E_0, S(u_1 + E_1) \dots (u_m + E_m)]$$

$$= S \sum_{a=1}^m P_{0a}(u_1 + E_1) \dots (u_m + E_m)$$

$$- S(u_1 + E_1) \dots (u_m + E_m) \sum_{i=1}^m P_{0a},$$

because $E_0S = SE_0$ and P_{0a} commutes with E_b for $b \neq a$.

Hence

$$[E_0, S(u_1 + E_1) \dots (u_m + E_m)]$$

$$= S \sum_{a=1}^m P_{0a}(u_1 + E_1) \dots (u_m + E_m)$$

$$- S(u_1 + E_1) \dots (u_m + E_m) \sum_{a=1}^m P_{0a},$$

because $E_0S = SE_0$ and P_{0a} commutes with E_b for $b \neq a$.

The sum of the permutation operators P_{0a} commutes with S (the Schur–Weyl duality). Applying the trace $\operatorname{tr}_{1,\dots,m}$ and using its cyclic property we get 0.

Example: Capelli determinant.

Example: Capelli determinant.

Take m = N and introduce the Capelli determinant by

$$C(u) = \operatorname{tr}_{1,\dots,N} A^{(N)} (u + E_1) \dots (u + E_N - N + 1).$$

Example: Capelli determinant.

Take m = N and introduce the Capelli determinant by

$$C(u) = \operatorname{tr}_{1,\dots,N} A^{(N)}(u + E_1) \dots (u + E_N - N + 1).$$

Then C(u) coincides with the column-determinant

$$C(u) = \operatorname{cdet} \begin{bmatrix} u + E_{11} & E_{12} & \dots & E_{1N} \\ E_{21} & u + E_{22} - 1 & \dots & E_{2N} \\ \vdots & \vdots & & \vdots \\ E_{N1} & E_{N2} & \dots & u + E_{NN} - N + 1 \end{bmatrix}.$$

Example: Capelli determinant.

Take m = N and introduce the Capelli determinant by

$$C(u) = \operatorname{tr}_{1,...,N} A^{(N)} (u + E_1) ... (u + E_N - N + 1).$$

Then C(u) coincides with the column-determinant

$$C(u) = \operatorname{cdet} egin{bmatrix} u + E_{11} & E_{12} & \dots & E_{1N} \\ E_{21} & u + E_{22} - 1 & \dots & E_{2N} \\ \vdots & \vdots & & \vdots \\ E_{N1} & E_{N2} & \dots & u + E_{NN} - N + 1 \end{bmatrix}.$$

All coefficients of the polynomial C(u) are Casimir elements.

$$\left(1 - \frac{P_{ab}}{b - a}\right)(u + E_a - a + 1)(u + E_b - b + 1)$$

$$= (u + E_b - b + 1)(u + E_a - a + 1)\left(1 - \frac{P_{ab}}{b - a}\right)$$

$$= (u + E_b - b + 1)(u + E_a - a + 1)\left(1 - \frac{P_{ab}}{b - a}\right).$$

$$\left(1 - \frac{P_{ab}}{b - a}\right)(u + E_a - a + 1)(u + E_b - b + 1)$$

$$= (u + E_b - b + 1)(u + E_a - a + 1)\left(1 - \frac{P_{ab}}{b - a}\right).$$

Hence, the fusion formula for $A^{(N)}$ gives

$$A^{(N)}(u+E_1)\dots(u+E_N-N+1)=(u+E_N-N+1)\dots(u+E_1)A^{(N)}$$

$$\left(1 - \frac{P_{ab}}{b - a}\right)(u + E_a - a + 1)(u + E_b - b + 1)$$

$$= (u + E_b - b + 1)(u + E_a - a + 1)\left(1 - \frac{P_{ab}}{b - a}\right).$$

Hence, the fusion formula for $A^{(N)}$ gives

$$A^{(N)} (u + E_1) \dots (u + E_N - N + 1) = (u + E_N - N + 1) \dots (u + E_1) A^{(N)}$$
 and that this equals $A^{(N)} C(u)$.

$$\left(1 - \frac{P_{ab}}{b - a}\right)(u + E_a - a + 1)(u + E_b - b + 1)$$

$$= (u + E_b - b + 1)(u + E_a - a + 1)\left(1 - \frac{P_{ab}}{b - a}\right).$$

Hence, the fusion formula for $A^{(N)}$ gives

$$A^{(N)}(u+E_1)\dots(u+E_N-N+1)=(u+E_N-N+1)\dots(u+E_1)A^{(N)}$$

and that this equals $A^{(N)} C(u)$.

It remains to note that $tr_{1,...,N}A^{(N)}=1$.

Take $s = (m \ m - 1 \dots 1)$ in the Theorem. Then

$$S = P_{m-1 m} \dots P_{2 3} P_{1 2}.$$

Take $s = (m \ m - 1 \dots 1)$ in the Theorem. Then

$$S = P_{m-1 m} \dots P_{2 3} P_{1 2}.$$

We get the Casimir elements (Gelfand invariants):

$$\operatorname{tr}_{1,\ldots,m} S E_1 \ldots E_m = \operatorname{tr} E^m.$$

Take $s = (m \ m - 1 \dots 1)$ in the Theorem. Then

$$S = P_{m-1 m} \dots P_{2 3} P_{1 2}.$$

We get the Casimir elements (Gelfand invariants):

$$\operatorname{tr}_{1,\ldots,m} S E_1 \ldots E_m = \operatorname{tr} E^m$$
.

For instance, for m = 2 we get

$$\operatorname{tr}_{1,2} P_{12} E_1 E_2 = \operatorname{tr}_{1,2} E_2 P_{12} E_2 = \operatorname{tr} E^2$$

because $\operatorname{tr}_1 P_{12} = 1$.

The Newton identity

Theorem [Perelomov-Popov, 1966].

We have the identity

$$1 + \sum_{m=0}^{\infty} \frac{(-1)^m \operatorname{tr} E^m}{(u - N + 1)^{m+1}} = \frac{C(u+1)}{C(u)}.$$

The Newton identity

Theorem [Perelomov-Popov, 1966].

We have the identity

$$1 + \sum_{m=0}^{\infty} \frac{(-1)^m \operatorname{tr} E^m}{(u - N + 1)^{m+1}} = \frac{C(u+1)}{C(u)}.$$

Proof. Verify

$$\operatorname{tr}_{1,\dots,N} A^{(N)}(u+E_1)\dots(u+E_{N-1}-N+2)(u+E_N+1) = C(u+1).$$

The Newton identity

Theorem [Perelomov-Popov, 1966].

We have the identity

$$1 + \sum_{m=0}^{\infty} \frac{(-1)^m \operatorname{tr} E^m}{(u - N + 1)^{m+1}} = \frac{C(u+1)}{C(u)}.$$

Proof. Verify

$$\operatorname{tr}_{1,\ldots,N} A^{(N)}(u+E_1)\ldots(u+E_{N-1}-N+2)(u+E_N+1)=C(u+1).$$

Hence,

$$C(u+1) - C(u) = N \operatorname{tr}_{1,\dots,N} A^{(N)} (u+E_1) \dots (u+E_{N-1} - N + 2)$$
$$= N \operatorname{tr}_{1} \quad {}_{N} A^{(N)} C(u) (u+E_N - N + 1)^{-1}.$$

Harish-Chandra isomorphism

Harish-Chandra isomorphism

Given an N-tuple of complex numbers $\lambda=(\lambda_1,\dots,\lambda_N)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra \mathfrak{gl}_N is generated by a nonzero vector $\xi\in L(\lambda)$ (the highest vector) such that

Harish-Chandra isomorphism

Given an N-tuple of complex numbers $\lambda=(\lambda_1,\dots,\lambda_N)$, the corresponding irreducible highest weight representation $L(\lambda)$ of the Lie algebra \mathfrak{gl}_N is generated by a nonzero vector $\xi\in L(\lambda)$ (the highest vector) such that

$$E_{ij}\,\xi = 0$$
 for $1\leqslant i < j\leqslant N,$ and $E_{ii}\,\xi = \lambda_i\,\xi$ for $1\leqslant i\leqslant N.$

Any element $z \in \mathbf{Z}(\mathfrak{gl}_N)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$.

Any element $z \in \mathbf{Z}(\mathfrak{gl}_N)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$.

When regarded as a function of the highest weight, $\chi(z)$ is a symmetric polynomial in the variables l_1,\ldots,l_N , where

$$l_i = \lambda_i - i + 1$$
.

Any element $z \in \mathbf{Z}(\mathfrak{gl}_N)$ acts in $L(\lambda)$ by multiplying each vector by a scalar $\chi(z)$.

When regarded as a function of the highest weight, $\chi(z)$ is a symmetric polynomial in the variables l_1, \ldots, l_N , where $l_i = \lambda_i - i + 1$.

The mapping $z \mapsto \chi(z)$ defines an algebra isomorphism

$$\chi: \mathbf{Z}(\mathfrak{gl}_N) \to \mathbb{C}[l_1, \ldots, l_N]^{\mathfrak{S}_N}$$

known as the Harish-Chandra isomorphism.

Example. Under the Harish-Chandra isomorphism we have

$$\chi: C(u) \mapsto (u+l_1) \dots (u+l_N), \qquad l_i = \lambda_i - i + 1.$$

Example. Under the Harish-Chandra isomorphism we have

$$\chi: C(u) \mapsto (u+l_1)\dots(u+l_N), \qquad l_i = \lambda_i - i + 1.$$

This is immediate from the definition

$$C(u) = \sum_{\sigma \in \mathfrak{S}_{v}} \operatorname{sgn} \sigma \cdot (u + E)_{\sigma(1)1} \dots (u + E - N + 1)_{\sigma(N)N}.$$

Example. Under the Harish-Chandra isomorphism we have

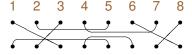
$$\chi: C(u) \mapsto (u+l_1)\dots(u+l_N), \qquad l_i = \lambda_i - i + 1.$$

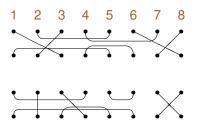
This is immediate from the definition

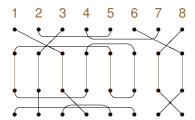
$$C(u) = \sum_{\sigma \in \mathfrak{S}_N} \operatorname{sgn} \sigma \cdot (u + E)_{\sigma(1)1} \dots (u + E - N + 1)_{\sigma(N)N}.$$

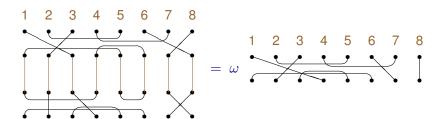
By the Newton formula, the Harish-Chandra images of the Gelfand invariants are found by

$$1 + \sum_{m=0}^{\infty} \frac{(-1)^m \chi(\operatorname{tr} E^m)}{(u-N+1)^{m+1}} = \prod_{i=1}^{N} \frac{u+l_i+1}{u+l_i}.$$





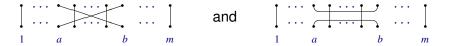




The dimension of the Brauer algebra $\mathcal{B}_m(\omega)$ is (2m-1)!!.

The dimension of the Brauer algebra $\mathcal{B}_m(\omega)$ is (2m-1)!!.

For $1 \leqslant a < b \leqslant m$ denote by s_{ab} and g_{ab} the diagrams



The dimension of the Brauer algebra $\mathcal{B}_m(\omega)$ is (2m-1)!!.

For $1 \leqslant a < b \leqslant m$ denote by s_{ab} and g_{ab} the diagrams

The symmetrizer in $\mathcal{B}_m(\omega)$ is the idempotent $s^{(m)}$ such that

$$s_{ab} \, s^{(m)} = s^{(m)} s_{ab} = s^{(m)}$$
 and $g_{ab} \, s^{(m)} = s^{(m)} g_{ab} = 0$.

Explicitly,

$$s^{(m)} = \frac{1}{m!} \sum_{r=0}^{\lfloor m/2 \rfloor} (-1)^r {\omega/2 + m - 2 \choose r}^{-1} \sum_{d \in \mathcal{D}^{(r)}} d,$$

where $\mathcal{D}^{(r)} \subset \mathcal{B}_m(\omega)$ denotes the set of diagrams which have exactly r horizontal edges in the top.

Explicitly,

$$s^{(m)} = \frac{1}{m!} \sum_{r=0}^{\lfloor m/2 \rfloor} (-1)^r {\omega/2 + m - 2 \choose r}^{-1} \sum_{d \in \mathcal{D}^{(r)}} d,$$

where $\mathcal{D}^{(r)} \subset \mathcal{B}_m(\omega)$ denotes the set of diagrams which have exactly r horizontal edges in the top. Also,

$$s^{(m)} = \prod_{1 \leq a < b \leq m} \left(1 - \frac{g_{ab}}{\omega + a + b - 3} \right) h^{(m)},$$

and

Explicitly,

$$s^{(m)} = \frac{1}{m!} \sum_{r=0}^{\lfloor m/2 \rfloor} (-1)^r {\omega/2 + m - 2 \choose r}^{-1} \sum_{d \in \mathcal{D}^{(r)}} d,$$

where $\mathcal{D}^{(r)} \subset \mathcal{B}_m(\omega)$ denotes the set of diagrams which have exactly r horizontal edges in the top. Also,

$$s^{(m)} = \prod_{1 \le a \le b \le m} \left(1 - \frac{g_{ab}}{\omega + a + b - 3} \right) h^{(m)},$$

and

$$s^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{s_{ab}}{b - a} - \frac{g_{ab}}{\omega/2 + b - a - 1} \right),$$

where the products are in the lexicographic order.

Brauer-Schur-Weyl duality

Brauer-Schur-Weyl duality

There are commuting actions of the classical groups in types B, C or D and the Brauer algebra with a specialized parameter ω on the tensor product space

Brauer-Schur-Weyl duality

There are commuting actions of the classical groups in types B, C or D and the Brauer algebra with a specialized parameter ω on the tensor product space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_{m}.$$

The dual pairs are

$$(\mathcal{B}_m(N), O_N)$$

Brauer-Schur-Weyl duality

There are commuting actions of the classical groups in types B, C or D and the Brauer algebra with a specialized parameter ω on the tensor product space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_{m}.$$

The dual pairs are

$$(\mathcal{B}_m(N), O_N)$$

and

$$(\mathcal{B}_m(-N), Sp_N)$$
 with $N=2n$.

Action in tensors

Action in tensors

In the case $\mathfrak{g}=\mathfrak{o}_N$ set $\omega=N$. The generators of $\mathcal{B}_m(N)$ act in the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_m$$

by the rule

$$s_{ab} \mapsto P_{ab}, \qquad g_{ab} \mapsto Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

Action in tensors

In the case $\mathfrak{g} = \mathfrak{o}_N$ set $\omega = N$. The generators of $\mathcal{B}_m(N)$ act in the tensor space

$$\underbrace{\mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N}_m$$

by the rule

$$s_{ab} \mapsto P_{ab}, \qquad g_{ab} \mapsto Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

where i' = N - i + 1 and

$$Q_{ab} = \sum_{i,j=1}^{N} 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In the case $\mathfrak{g}=\mathfrak{sp}_N$ with N=2n set $\omega=-N$. The generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

$$s_{ab} \mapsto -P_{ab}, \qquad g_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

In the case $\mathfrak{g}=\mathfrak{sp}_N$ with N=2n set $\omega=-N$. The generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

$$s_{ab} \mapsto -P_{ab}, \qquad g_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

with
$$\varepsilon_i = -\varepsilon_{n+i} = 1$$
 for $i = 1, ..., n$ and

with
$$\varepsilon_i = -\varepsilon_{n+i} = 1$$
 for $i = 1, \dots, n$ and

$$Q_{ab} = \sum_{i=1}^{N} \varepsilon_{i} \varepsilon_{j} \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In the case $\mathfrak{g}=\mathfrak{sp}_N$ with N=2n set $\omega=-N$. The generators of $\mathcal{B}_m(-N)$ act in the tensor space $(\mathbb{C}^N)^{\otimes m}$ by

$$s_{ab} \mapsto -P_{ab}, \qquad g_{ab} \mapsto -Q_{ab}, \qquad 1 \leqslant a < b \leqslant m,$$

with $\varepsilon_i = -\varepsilon_{n+i} = 1$ for $i = 1, \ldots, n$ and

$$Q_{ab} = \sum_{i,j=1}^{N} \varepsilon_i \varepsilon_j \, 1^{\otimes (a-1)} \otimes e_{ij} \otimes 1^{\otimes (b-a-1)} \otimes e_{i'j'} \otimes 1^{\otimes (m-b)}.$$

In both cases denote by $S^{(m)}$ the image of the symmetrizer $s^{(m)}$ under the action in tensors,

$$S^{(m)} \in \underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m}.$$

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a < b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and in the symplectic case

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 - \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{n - b + a + 1} \right).$$

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and in the symplectic case

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 - \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{n - b + a + 1} \right).$$

Remark. $S^{(n+1)} = 0$ for $\mathfrak{g} = \mathfrak{sp}_{2n}$.

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and in the symplectic case

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 - \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{n - b + a + 1} \right).$$

Remark. $S^{(n+1)} = 0$ for $\mathfrak{g} = \mathfrak{sp}_{2n}$. Consider $\gamma_m(-2n) S^{(m)}$,

$$\gamma_m(\omega) = rac{\omega + m - 2}{\omega + 2m - 2}, \qquad \omega = egin{cases} N & \qquad ext{for} \quad \mathfrak{g} = \mathfrak{o}_N \ -2n & \qquad ext{for} \quad \mathfrak{g} = \mathfrak{sp}_{2n}. \end{cases}$$

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1.

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1.

Set

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \, \varepsilon_j \, E_{j'i'},$

respectively.

Let $\mathfrak{g} = \mathfrak{o}_N$, \mathfrak{sp}_N with N = 2n or N = 2n + 1.

Set

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \varepsilon_j E_{j'i'}$,

respectively.

Introduce the $N \times N$ matrix $F = [F_{ij}]$

$$F = \sum_{i,i=1}^{N} e_{ij} \otimes F_{ij} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{g}).$$

Theorem. For any $s \in \mathcal{B}_m(\omega)$ with $\omega = \pm N$

and $u_1, \ldots, u_m \in \mathbb{C}$ the element

$$\operatorname{tr}_{1,\ldots,m} S\left(u_1+F_1\right)\ldots\left(u_m+F_m\right)$$

belongs to the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$.

Theorem. For any $s \in \mathcal{B}_m(\omega)$ with $\omega = \pm N$

and $u_1, \ldots, u_m \in \mathbb{C}$ the element

$$\operatorname{tr}_{1,\ldots,m} S\left(u_1+F_1\right)\ldots\left(u_m+F_m\right)$$

belongs to the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$.

In particular, there are analogues of the Capelli determinant and Gelfand invariants.

Theorem. For any $s \in \mathcal{B}_m(\omega)$ with $\omega = \pm N$ and $u_1, \dots, u_m \in \mathbb{C}$ the element

$$\operatorname{tr}_{1,\ldots,m} S\left(u_1+F_1\right)\ldots\left(u_m+F_m\right)$$

belongs to the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$.

In particular, there are analogues of the Capelli determinant and Gelfand invariants.

A version of the Newton identity also holds.

Proof of the theorem relies on the matrix form of the defining relations for $U(\mathfrak{g})$:

Proof of the theorem relies on the matrix form of the defining relations for $U(\mathfrak{g})$:

$$F_1 F_2 - F_2 F_1 = (P_{12} - Q_{12}) F_2 - F_2 (P_{12} - Q_{12})$$

Proof of the theorem relies on the matrix form of the defining relations for $U(\mathfrak{g})$:

$$F_1 F_2 - F_2 F_1 = (P_{12} - Q_{12}) F_2 - F_2 (P_{12} - Q_{12})$$

where both sides are regarded as elements of the algebra $\operatorname{End} \mathbb{C}^N \otimes \operatorname{End} \mathbb{C}^N \otimes \operatorname{U}(\mathfrak{g}) \text{ and }$

$$F_1 = \sum_{i,j=1}^N e_{ij} \otimes 1 \otimes F_{ij}, \qquad F_2 = \sum_{i,j=1}^N 1 \otimes e_{ij} \otimes F_{ij}.$$

More constructions of Casimir elements for the Lie algebras \mathfrak{gl}_N , \mathfrak{o}_N and \mathfrak{sp}_{2n} are known.

More constructions of Casimir elements for the Lie algebras \mathfrak{gl}_N , \mathfrak{o}_N and \mathfrak{sp}_{2n} are known.

In particular, there is a linear basis of $Z(\mathfrak{gl}_N)$ formed by the quantum immanants \mathbb{S}_λ with λ running over partitions with at most N parts (Okounkov–Olshanski, 1996, 1998).

More constructions of Casimir elements for the Lie algebras \mathfrak{gl}_N , \mathfrak{o}_N and \mathfrak{sp}_{2n} are known.

In particular, there is a linear basis of $Z(\mathfrak{gl}_N)$ formed by the quantum immanants \mathbb{S}_λ with λ running over partitions with at most N parts (Okounkov–Olshanski, 1996, 1998).

The Harish-Chandra images $\chi(\mathbb{S}_{\lambda})$ are the shifted Schur polynomials.

Affine Kac–Moody algebras

Affine Kac-Moody algebras

Define an invariant bilinear form on a simple Lie algebra \mathfrak{g} ,

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

Affine Kac-Moody algebras

Define an invariant bilinear form on a simple Lie algebra \mathfrak{g} ,

$$\langle X, Y \rangle = \frac{1}{2h^{\vee}} \operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y),$$

where h^{\vee} is the dual Coxeter number.

For the classical types, $\langle X, Y \rangle = \text{const} \cdot \text{tr} XY$,

$$h^{\vee} = egin{cases} N & ext{for} & \mathfrak{g} = \mathfrak{sl}_N, & ext{const} = 1 \ N-2 & ext{for} & \mathfrak{g} = \mathfrak{o}_N, & ext{const} = rac{1}{2} \ n+1 & ext{for} & \mathfrak{g} = \mathfrak{sp}_{2n}, & ext{const} = 1. \end{cases}$$

The affine Kac–Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$$

The affine Kac–Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$$

with the commutation relations

$$\left[X[r],Y[s] \right] = \left[X,Y \right] [r+s] + r \, \delta_{r,-s} \langle X,Y \rangle \, K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

The affine Kac–Moody algebra $\widehat{\mathfrak{g}}$ is the central extension

$$\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}K$$

with the commutation relations

$$\left[X[r],Y[s]\right] = [X,Y][r+s] + r\,\delta_{r,-s}\langle X,Y\rangle\,K,$$

where $X[r] = Xt^r$ for any $X \in \mathfrak{g}$ and $r \in \mathbb{Z}$.

Problem: What are Casimir elements for $\widehat{\mathfrak{g}}$?

The universal enveloping algebra at the critical level $U_{-h^{\vee}}(\widehat{\mathfrak{g}})$ is the quotient of $U(\widehat{\mathfrak{g}})$ by the ideal generated by $K+h^{\vee}$.

The universal enveloping algebra at the critical level $U_{-h^{\vee}}(\widehat{\mathfrak{g}})$ is the quotient of $U(\widehat{\mathfrak{g}})$ by the ideal generated by $K+h^{\vee}$.

By [Kac 1974], the canonical quadratic Casimir element belongs to a completion $\widetilde{\mathrm{U}}_{-h^\vee}(\widehat{\mathfrak{g}})$ of $\mathrm{U}_{-h^\vee}(\widehat{\mathfrak{g}})$ with respect to the left ideals I_m , $m\geqslant 0$, generated by $t^m\mathfrak{g}[t]$.

Let $\,Z(\widehat{\mathfrak g})\,$ be the center of the completed algebra $\,\widetilde{U}_{-\hbar^\vee}(\widehat{\mathfrak g}).$

Let $Z(\widehat{\mathfrak{g}})$ be the center of the completed algebra $\widetilde{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})$.

Known results:

▶ Algebraic structure of Z(ĝ).

Let $Z(\widehat{\mathfrak{g}})$ be the center of the completed algebra $\widetilde{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})$.

Known results:

- Algebraic structure of Z(ĝ).
- \triangleright Explicit generators for classical types A, B, C, D.

Let $Z(\widehat{\mathfrak{g}})$ be the center of the completed algebra $\widetilde{\mathrm{U}}_{-h^{\vee}}(\widehat{\mathfrak{g}})$.

Known results:

- Algebraic structure of Z(ĝ).
- \triangleright Explicit generators for classical types A, B, C, D.

Questions:

Extension to Lie superalgebras.

Let $Z(\widehat{\mathfrak{g}})$ be the center of the completed algebra $\widetilde{\mathrm{U}}_{-h^{\vee}}(\widehat{\mathfrak{g}})$.

Known results:

- Algebraic structure of Z(ĝ).
- \triangleright Explicit generators for classical types A, B, C, D.

Questions:

- Extension to Lie superalgebras.
- Extension to quantum affine algebras.

Example: $g = gl_N$. Defining relations for $U(\widehat{gl}_N)$:

$$E_{ij}[r] E_{kl}[s] - E_{kl}[s] E_{ij}[r]$$

$$= \delta_{kj} E_{il}[r+s] - \delta_{il} E_{kj}[r+s] + r \delta_{r,-s} \left(\delta_{kj} \delta_{il} - \frac{\delta_{ij} \delta_{kl}}{N} \right) K.$$

Example: $\mathfrak{g} = \mathfrak{gl}_N$. Defining relations for $U(\widehat{\mathfrak{gl}}_N)$:

$$\begin{split} E_{ij}[r] E_{kl}[s] - E_{kl}[s] E_{ij}[r] \\ = \delta_{kj} E_{il}[r+s] - \delta_{il} E_{kj}[r+s] + r \delta_{r,-s} \left(\delta_{kj} \delta_{il} - \frac{\delta_{ij} \delta_{kl}}{N} \right) K. \end{split}$$

The critical level is K = -N.

Example: $\mathfrak{g} = \mathfrak{gl}_N$. Defining relations for $U(\widehat{\mathfrak{gl}}_N)$:

$$E_{ij}[r] E_{kl}[s] - E_{kl}[s] E_{ij}[r]$$

$$= \delta_{kj} E_{il}[r+s] - \delta_{il} E_{kj}[r+s] + r \delta_{r,-s} \left(\delta_{kj} \delta_{il} - \frac{\delta_{ij} \delta_{kl}}{N} \right) K.$$

The critical level is K = -N.

For all $r \in \mathbb{Z}$ the sums

$$\sum_{i=1}^{N} E_{ii}[r]$$

are Casimir elements.

For $r \in \mathbb{Z}$ set

$$C_r = \sum_{i,j=1}^{N} \left(\sum_{s<0} E_{ij}[s] E_{ji}[r-s] + \sum_{s\geqslant0} E_{ji}[r-s] E_{ij}[s] \right).$$

For $r \in \mathbb{Z}$ set

$$C_r = \sum_{i=1}^{N} \left(\sum_{s=0}^{N} E_{ij}[s] E_{ji}[r-s] + \sum_{s=0}^{N} E_{ji}[r-s] E_{ij}[s] \right).$$

All C_r are Casimir elements at the critical level, they belong to the completed universal enveloping algebra $\widetilde{\mathrm{U}}_{-N}(\widehat{\mathfrak{gl}}_N)$.

Introduce the (formal) Laurent series

$$E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] z^{-r-1}$$

Introduce the (formal) Laurent series

$$E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] z^{-r-1}$$

and use the notation

$$E_{ij}(z)_{+} = \sum_{r < 0} E_{ij}[r] z^{-r-1}, \qquad E_{ij}(z)_{-} = \sum_{r \geqslant 0} E_{ij}[r] z^{-r-1}.$$

Introduce the (formal) Laurent series

$$E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] z^{-r-1}$$

and use the notation

$$E_{ij}(z)_{+} = \sum_{r < 0} E_{ij}[r] z^{-r-1}, \qquad E_{ij}(z)_{-} = \sum_{r \ge 0} E_{ij}[r] z^{-r-1}.$$

Given two Laurent series a(z) and b(z),

their normally ordered product is defined by

$$: a(z)b(z) := a(z)_+b(z) + b(z)a(z)_-.$$

Note

$$\sum_{r \in \mathbb{Z}} C_r z^{-r-2} = \sum_{i,j=1}^{N} \left(E_{ij}(z)_{+} E_{ji}(z) + E_{ji}(z) E_{ij}(z)_{-} \right).$$

Note

$$\sum_{r\in\mathbb{Z}} C_r z^{-r-2} = \sum_{i,j=1}^N \left(E_{ij}(z)_+ E_{ji}(z) + E_{ji}(z) E_{ij}(z)_- \right).$$

Hence, all coefficients of the series

$$\operatorname{tr}: E(z)^2: = \sum_{i=1}^{N} : E_{ij}(z)E_{ji}(z):$$

are Casimir elements.

Similarly, all coefficients of the series

$$\operatorname{tr}: E(z)^3: = \sum_{i,i,k=1}^{N} : E_{ij}(z) E_{jk}(z) E_{ki}(z) :$$

are Casimir elements, where the normal ordering is applied from right to left.

Similarly, all coefficients of the series

$$\operatorname{tr}: E(z)^3: = \sum_{i,i,k=1}^{N} : E_{ij}(z) E_{jk}(z) E_{ki}(z) :$$

are Casimir elements, where the normal ordering is applied from right to left.

However, the claim does not extend to $tr : E(z)^4 : !$

Similarly, all coefficients of the series

$$\operatorname{tr}: E(z)^3: = \sum_{i,j,k=1}^{N} : E_{ij}(z) E_{jk}(z) E_{ki}(z) :$$

are Casimir elements, where the normal ordering is applied from right to left.

However, the claim does not extend to $tr : E(z)^4 : !$

Correction term: all coefficients of the series

$$\operatorname{tr}: E(z)^4: - \operatorname{tr}: \left(\partial_z E(z)\right)^2:$$

are Casimir elements.

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$ -module

$$V(\mathfrak{g}) = \mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})/\mathrm{U}_{-h^{\vee}}(\widehat{\mathfrak{g}})\,\mathfrak{g}[t].$$

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$ -module

$$V(\mathfrak{g}) = \mathrm{U}_{-h^\vee}(\widehat{\mathfrak{g}})/\mathrm{U}_{-h^\vee}(\widehat{\mathfrak{g}})\,\mathfrak{g}[t].$$

The Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$ -invariants

$$\mathfrak{z}(\widehat{\mathfrak{g}})=\{v\in V(\mathfrak{g})\mid \mathfrak{g}[t]\,v=0\}.$$

The vacuum module at the critical level is the $\hat{\mathfrak{g}}$ -module

$$V(\mathfrak{g}) = \mathrm{U}_{-h^\vee}(\widehat{\mathfrak{g}})/\mathrm{U}_{-h^\vee}(\widehat{\mathfrak{g}})\,\mathfrak{g}[t].$$

The Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$ -invariants

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] \, v = 0 \}.$$

Note $V(\mathfrak{g}) \cong \mathrm{U} \big(t^{-1} \mathfrak{g}[t^{-1}] \big)$ as a vector space.

The vacuum module at the critical level is the $\widehat{\mathfrak{g}}$ -module

$$V(\mathfrak{g}) = \mathrm{U}_{-h^\vee}(\widehat{\mathfrak{g}})/\mathrm{U}_{-h^\vee}(\widehat{\mathfrak{g}})\,\mathfrak{g}[t].$$

The Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ is the algebra of $\mathfrak{g}[t]$ -invariants

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \{ v \in V(\mathfrak{g}) \mid \mathfrak{g}[t] \, v = 0 \}.$$

Note $V(\mathfrak{g}) \cong \mathrm{U} \big(t^{-1} \mathfrak{g}[t^{-1}] \big)$ as a vector space.

Hence, $\mathfrak{z}(\widehat{\mathfrak{g}})$ is a subalgebra of $U(t^{-1}\mathfrak{g}[t^{-1}])$.

Properties:

▶ The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $U(t^{-1}\mathfrak{g}[t^{-1}])$ is commutative.

Properties:

- ▶ The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $U(t^{-1}\mathfrak{g}[t^{-1}])$ is commutative.
- It is invariant with respect to the translation operator T defined as the derivation T = -d/dt.

Properties:

- ▶ The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $U(t^{-1}\mathfrak{g}[t^{-1}])$ is commutative.
- It is invariant with respect to the translation operator T defined as the derivation T = -d/dt.

Any element of $\mathfrak{z}(\widehat{\mathfrak{g}})$ is called a Segal–Sugawara vector.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big)$, $n = \mathrm{rank}\,\mathfrak{g}$, such that

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in \mathrm{U}\big(t^{-1}\mathfrak{g}[t^{-1}]\big)$, $n = \mathrm{rank}\,\mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \geqslant 0].$$

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$, $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \geqslant 0].$$

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.

There exist Segal–Sugawara vectors $S_1, \ldots, S_n \in U(t^{-1}\mathfrak{g}[t^{-1}])$, $n = \operatorname{rank} \mathfrak{g}$, such that

$$\mathfrak{z}(\widehat{\mathfrak{g}}) = \mathbb{C}[T^k S_l \mid l = 1, \dots, n, \ k \geqslant 0].$$

We call S_1, \ldots, S_n a complete set of Segal–Sugawara vectors.

Explicit constructions of such sets and a new proof of the theorem for the classical types A, B, C, D:

[Chervov-Talalaev, 2006, Chervov-M., 2009, M. 2013].

Example: $\mathfrak{g} = \mathfrak{gl}_N$.

Example: $\mathfrak{g} = \mathfrak{gl}_N$.

Set $\tau = -d/dt$ and consider the $N \times N$ matrix

$$\tau + E[-1] = \begin{bmatrix} \tau + E_{11}[-1] & E_{12}[-1] & \dots & E_{1N}[-1] \\ E_{21}[-1] & \tau + E_{22}[-1] & \dots & E_{2N}[-1] \\ \vdots & \vdots & \ddots & \vdots \\ E_{N1}[-1] & E_{N2}[-1] & \dots & \tau + E_{NN}[-1] \end{bmatrix}.$$

The coefficients ϕ_1, \ldots, ϕ_N of the polynomial

$$cdet(\tau + E[-1]) = \tau^{N} + \phi_1 \tau^{N-1} + \dots + \phi_{N-1} \tau + \phi_N$$

form a complete set of Segal-Sugawara vectors.

The coefficients ϕ_1, \dots, ϕ_N of the polynomial

$$cdet(\tau + E[-1]) = \tau^{N} + \phi_{1}\tau^{N-1} + \dots + \phi_{N-1}\tau + \phi_{N}$$

form a complete set of Segal-Sugawara vectors.

For N=2

$$cdet(\tau + E[-1]) = (\tau + E_{11}[-1])(\tau + E_{22}[-1]) - E_{21}[-1]E_{12}[-1]$$
$$= \tau^2 + \phi_1 \tau + \phi_2$$

The coefficients ϕ_1, \dots, ϕ_N of the polynomial

$$cdet(\tau + E[-1]) = \tau^{N} + \phi_{1}\tau^{N-1} + \dots + \phi_{N-1}\tau + \phi_{N}$$

form a complete set of Segal-Sugawara vectors.

For N=2

$$cdet(\tau + E[-1]) = (\tau + E_{11}[-1])(\tau + E_{22}[-1]) - E_{21}[-1]E_{12}[-1]$$
$$= \tau^2 + \phi_1 \tau + \phi_2$$

with

$$\phi_1 = E_{11}[-1] + E_{22}[-1],$$

 $\phi_2 = E_{11}[-1]E_{22}[-1] - E_{21}[-1]E_{12}[-1] + E_{22}[-2].$

$$\operatorname{tr} (\tau + E[-1])^m = \theta_{m0} \tau^m + \theta_{m1} \tau^{m-1} + \dots + \theta_{mm}$$

$$\operatorname{tr}\left(\tau+E[-1]\right)^{m}=\theta_{m0}\,\tau^{m}+\theta_{m1}\,\tau^{m-1}+\cdots+\theta_{mm}$$

All coefficients θ_{mi} belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

$$\operatorname{tr}\left(\tau + E[-1]\right)^{m} = \theta_{m0} \, \tau^{m} + \theta_{m1} \, \tau^{m-1} + \dots + \theta_{mm}$$

All coefficients θ_{mi} belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

The elements $\theta_{11},\dots,\theta_{NN}$ form a complete set of Segal–Sugawara vectors.

$$\operatorname{tr}\left(\tau + E[-1]\right)^{m} = \theta_{m0} \tau^{m} + \theta_{m1} \tau^{m-1} + \dots + \theta_{mm}$$

All coefficients θ_{mi} belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

The elements $\theta_{11},\dots,\theta_{NN}$ form a complete set of Segal–Sugawara vectors.

The following are Segal–Sugawara vectors for \mathfrak{gl}_N :

$$\operatorname{tr} E[-1], \quad \operatorname{tr} E[-1]^2, \quad \operatorname{tr} E[-1]^3, \quad \operatorname{tr} E[-1]^4 - \operatorname{tr} E[-2]^2.$$

The corresponding central elements in $\widetilde{\mathrm{U}}_{-N}(\widehat{\mathfrak{gl}}_N)$ are recovered by the state-field correspondence map Y which takes elements of the vacuum module $V(\mathfrak{gl}_N)$ to Laurent series in z;

The corresponding central elements in $\widetilde{\mathrm{U}}_{-N}(\widehat{\mathfrak{gl}}_N)$ are recovered by the state-field correspondence map Y which takes elements of the vacuum module $V(\mathfrak{gl}_N)$ to Laurent series in z;

its application to Segal-Sugawara vectors yields Laurent series whose coefficients are Casimir elements.

The corresponding central elements in $\widetilde{\mathrm{U}}_{-N}(\widehat{\mathfrak{gl}}_N)$ are recovered by the state-field correspondence map Y which takes elements of the vacuum module $V(\mathfrak{gl}_N)$ to Laurent series in z;

its application to Segal–Sugawara vectors yields Laurent series whose coefficients are Casimir elements.

By definition,

$$Y: E_{ij}[-1] \mapsto E_{ij}(z) = \sum_{r \in \mathbb{Z}} E_{ij}[r] z^{-r-1}.$$

Also,

$$Y: E_{ij}[-r-1] \mapsto \frac{1}{r!} \partial_z^r E_{ij}(z), \qquad r \geqslant 0,$$

Also,

$$Y: E_{ij}[-r-1] \mapsto \frac{1}{r!} \partial_z^r E_{ij}(z), \qquad r \geqslant 0,$$

and

$$Y: E_{ii}[-1] E_{kl}[-1] \mapsto : E_{ii}(z) E_{kl}(z) :$$

Also,

$$Y: E_{ij}[-r-1] \mapsto \frac{1}{r!} \, \partial_z^r E_{ij}(z), \qquad r \geqslant 0,$$

and

$$Y: E_{ij}[-1] E_{kl}[-1] \mapsto : E_{ij}(z) E_{kl}(z) :$$

We have

$$Y: \operatorname{tr} E[-1] \mapsto \operatorname{tr} E(z)$$

$$Y: \operatorname{tr} E[-1]^2 \mapsto \operatorname{tr} : E(z)^2 :$$

$$Y: \operatorname{tr} E[-1]^3 \mapsto \operatorname{tr} : E(z)^3 :$$

$$Y: \operatorname{tr} E[-1]^4 - \operatorname{tr} E[-2]^2 \mapsto \operatorname{tr} : E(z)^4 : - \operatorname{tr} : (\partial_z E(z))^2 :$$

Write

$$\operatorname{tr}: \left(\partial_z + E(z)\right)^m := \theta_{m0}(z) \, \partial_z^m + \cdots + \theta_{mm}(z).$$

Write

$$\operatorname{tr}: \left(\partial_z + E(z)\right)^m := \theta_{m0}(z) \, \partial_z^m + \dots + \theta_{mm}(z).$$

Theorem. The coefficients of the Laurent series

$$\theta_{11}(z),\ldots,\theta_{NN}(z)$$

are topological generators of the center of $\widetilde{\mathrm{U}}_{-N}(\widehat{\mathfrak{gl}}_N)$.

Write

$$\operatorname{tr}: \left(\partial_z + E(z)\right)^m := \theta_{m0}(z) \, \partial_z^m + \dots + \theta_{mm}(z).$$

Theorem. The coefficients of the Laurent series

$$\theta_{11}(z),\ldots,\theta_{NN}(z)$$

are topological generators of the center of $\widetilde{\mathrm{U}}_{-N}(\widehat{\mathfrak{gl}}_N)$.

Remark. The theorem holds in the same form for any complete set of Segal–Sugawara vectors.

Proving the Feigin–Frenkel theorem for the classical types:

Proving the Feigin-Frenkel theorem for the classical types:

▶ Produce Segal–Sugawara vectors $S_1, ..., S_n$ explicitly.

Proving the Feigin–Frenkel theorem for the classical types:

- ▶ Produce Segal–Sugawara vectors $S_1, ..., S_n$ explicitly.
- Show that all elements T^kS_l with $l=1,\ldots,n$ and $k\geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Proving the Feigin-Frenkel theorem for the classical types:

- ▶ Produce Segal–Sugawara vectors $S_1, ..., S_n$ explicitly.
- Show that all elements T^kS_l with $l=1,\ldots,n$ and $k\geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Use the classical limit:

$$\operatorname{gr} \operatorname{U} \left(t^{-1} \mathfrak{g} [t^{-1}] \right) \cong \operatorname{S} \left(t^{-1} \mathfrak{g} [t^{-1}] \right)$$

Proving the Feigin–Frenkel theorem for the classical types:

- ▶ Produce Segal–Sugawara vectors $S_1, ..., S_n$ explicitly.
- Show that all elements T^kS_l with $l=1,\ldots,n$ and $k\geqslant 0$ are algebraically independent and generate $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Use the classical limit:

$$\operatorname{gr} \operatorname{U} \left(t^{-1} \mathfrak{g} [t^{-1}] \right) \cong \operatorname{S} \left(t^{-1} \mathfrak{g} [t^{-1}] \right)$$

which yields a $\mathfrak{g}[t]$ -module structure on the symmetric algebra $S\left(t^{-1}\mathfrak{g}[t^{-1}]\right)\cong S\left(\mathfrak{g}[t,t^{-1}]/\mathfrak{g}[t]\right).$

Let X_1, \ldots, X_d be a basis of $\mathfrak g$ and let $P = P(X_1, \ldots, X_d)$ be a $\mathfrak g$ -invariant in the symmetric algebra $S(\mathfrak g)$.

Let X_1, \ldots, X_d be a basis of $\mathfrak g$ and let $P = P(X_1, \ldots, X_d)$ be a $\mathfrak g$ -invariant in the symmetric algebra $S(\mathfrak g)$. Then each element

$$P_{(r)} = T^r P(X_1[-1], \dots, X_d[-1]), \qquad r \geqslant 0,$$

is a $\mathfrak{g}[t]$ -invariant in the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$.

Let X_1, \ldots, X_d be a basis of $\mathfrak g$ and let $P = P(X_1, \ldots, X_d)$ be a $\mathfrak g$ -invariant in the symmetric algebra $S(\mathfrak g)$. Then each element

$$P_{(r)} = T^r P(X_1[-1], \dots, X_d[-1]), \qquad r \geqslant 0,$$

is a $\mathfrak{g}[t]$ -invariant in the symmetric algebra $S(t^{-1}\mathfrak{g}[t^{-1}])$.

Theorem (Raïs–Tauvel 1992, Beilinson–Drinfeld 1997). If P_1, \ldots, P_n are algebraically independent generators of $S(\mathfrak{g})^{\mathfrak{g}}$, then the elements $P_{1,(r)}, \ldots, P_{n,(r)}$ with $r \geqslant 0$ are algebraically independent generators of $S(t^{-1}\mathfrak{g}[t^{-1}])^{\mathfrak{g}[t]}$.

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

and

$$E[r] = \sum_{i=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}[t, t^{-1}]).$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

and

$$E[r] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}[t, t^{-1}]).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{U} (\mathfrak{gl}_N[t, t^{-1}])$$

Set

$$E_{ij}[r] = E_{ij} t^r \in \mathfrak{gl}_N[t, t^{-1}]$$

and

$$E[r] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{gl}_{N}[t, t^{-1}]).$$

Consider the algebra

$$\underbrace{\operatorname{End} \mathbb{C}^N \otimes \ldots \otimes \operatorname{End} \mathbb{C}^N}_{m} \otimes \operatorname{U} (\mathfrak{gl}_N[t, t^{-1}])$$

and recall its elements $H^{(m)}$ and $A^{(m)}$.

Theorem. All coefficients of the polynomials in $\tau = -d/dt$

Theorem. All coefficients of the polynomials in $\tau = -d/dt$

$$\operatorname{tr}_{1,\dots,m} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$,

$$\operatorname{tr}_{1,\dots,m} H^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm}$,

and

$$\operatorname{tr}(\tau + E[-1])^m = \theta_{m0} \tau^m + \theta_{m1} \tau^{m-1} + \dots + \theta_{mm}$$

Theorem. All coefficients of the polynomials in $\tau = -d/dt$

$$\operatorname{tr}_{1,\dots,m} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m)$$

= $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$,

$$\operatorname{tr}_{1,...,m} H^{(m)} (\tau + E[-1]_1) ... (\tau + E[-1]_m)$$

= $\psi_{m0} \tau^m + \psi_{m1} \tau^{m-1} + \dots + \psi_{mm}$,

and

$$\operatorname{tr} (\tau + E[-1])^m = \theta_{m0} \tau^m + \theta_{m1} \tau^{m-1} + \dots + \theta_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{gl}}_N)$.

Proof. Use the matrix form of the defining relations of $U_{-N}(\widehat{\mathfrak{gl}}_N)$:

Proof. Use the matrix form of the defining relations of $U_{-N}(\widehat{\mathfrak{gl}}_N)$:

For any $r \in \mathbb{Z}$ set

$$E[r] = \sum_{ij}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}_{-N}(\widehat{\mathfrak{gl}}_{N}).$$

Proof. Use the matrix form of the defining relations of $U_{-N}(\widehat{\mathfrak{gl}}_N)$:

For any $r \in \mathbb{Z}$ set

$$E[r] = \sum_{i,j=1}^{N} e_{ij} \otimes E_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}_{-N}(\widehat{\mathfrak{gl}}_{N}).$$

The defining relations can be written in the form

$$E[r]_1 E[s]_2 - E[s]_2 E[r]_1$$

$$= (E[r+s]_1 - E[r+s]_2) P_{12} + r \delta_{r,-s} (1 - NP_{12}).$$

The required relations in the vacuum module are

$$E[0]_0 \operatorname{tr}_{1,\dots,m} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m) = 0$$

The required relations in the vacuum module are

$$E[0]_0 \operatorname{tr}_{1,\dots,m} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m) = 0$$

and

$$E[1]_0 \operatorname{tr}_{1,\ldots,m} A^{(m)} (\tau + E[-1]_1) \ldots (\tau + E[-1]_m) = 0.$$

The required relations in the vacuum module are

$$E[0]_0 \operatorname{tr}_{1,\dots,m} A^{(m)} (\tau + E[-1]_1) \dots (\tau + E[-1]_m) = 0$$

and

$$E[1]_0 \operatorname{tr}_{1,\ldots,m} A^{(m)} (\tau + E[-1]_1) \ldots (\tau + E[-1]_m) = 0.$$

The elements ψ_{ma} and θ_{ma} are expressed in terms of the ϕ_{ma} through the MacMahon Master Theorem and the Newton identities, respectively.

The coefficients of the column-determinant are related to the ϕ_{ma} through the relation

$$cdet(\tau + E[-1]) = tr_{1,...,N} A^{(N)} (\tau + E[-1]_1) ... (\tau + E[-1]_N).$$

The coefficients of the column-determinant are related to the ϕ_{ma} through the relation

$$\operatorname{cdet}(\tau + E[-1]) = \operatorname{tr}_{1,\dots,N} A^{(N)}(\tau + E[-1]_1) \dots (\tau + E[-1]_N).$$

This follows from the property

$$A^{(N)} (\tau + E[-1]_1) \dots (\tau + E[-1]_N)$$

$$= A^{(N)} (\tau + E[-1]_1) \dots (\tau + E[-1]_N) A^{(N)},$$

The coefficients of the column-determinant are related to the ϕ_{ma} through the relation

$$\operatorname{cdet}(\tau + E[-1]) = \operatorname{tr}_{1,\dots,N} A^{(N)}(\tau + E[-1]_1) \dots (\tau + E[-1]_N).$$

This follows from the property

$$A^{(N)} (\tau + E[-1]_1) \dots (\tau + E[-1]_N)$$

$$= A^{(N)} (\tau + E[-1]_1) \dots (\tau + E[-1]_N) A^{(N)},$$

implied by the fact that $\tau + E[-1]$ is a Manin matrix.

Recall the symmetrizers associated with \mathfrak{o}_N and \mathfrak{sp}_{2n} :

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

Recall the symmetrizers associated with \mathfrak{o}_N and \mathfrak{sp}_{2n} :

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 - \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{n - b + a + 1} \right).$$

Recall the symmetrizers associated with \mathfrak{o}_N and \mathfrak{sp}_{2n} :

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le m} \left(1 + \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{N/2 + b - a - 1} \right),$$

and

$$S^{(m)} = \frac{1}{m!} \prod_{1 \le a \le b \le n} \left(1 - \frac{P_{ab}}{b - a} - \frac{Q_{ab}}{n - b + a + 1} \right).$$

Also,

$$\gamma_m(\omega) = rac{\omega + m - 2}{\omega + 2m - 2}, \qquad \omega = egin{cases} N & \qquad ext{for} \quad \mathfrak{g} = \mathfrak{o}_N \ -2n & \qquad ext{for} \quad \mathfrak{g} = \mathfrak{sp}_{2n}. \end{cases}$$

As before,

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \, \varepsilon_j \, E_{j'i'}$

As before,

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \, \varepsilon_j \, E_{j'i'}$

and

$$F_{ij}[r] = F_{ij} t^r \in \mathfrak{g}[t, t^{-1}].$$

As before,

$$F_{ij} = E_{ij} - E_{j'i'}$$
 or $F_{ij} = E_{ij} - \varepsilon_i \, \varepsilon_j \, E_{j'i'}$

and

$$F_{ij}[r] = F_{ij} t^r \in \mathfrak{g}[t, t^{-1}].$$

Combine into a matrix

$$F[r] = \sum_{i:i=1}^{N} e_{ij} \otimes F_{ij}[r] \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{U}(\mathfrak{g}[t, t^{-1}]).$$

Theorem. All coefficients of the polynomial in $\tau = -d/dt$

$$\gamma_m(\omega) \operatorname{tr}_{1,...,m} S^{(m)} (\tau + F[-1]_1) ... (\tau + F[-1]_m)$$

= $\phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \cdots + \phi_{mm}$

Theorem. All coefficients of the polynomial in $\tau = -d/dt$

$$\gamma_m(\omega) \operatorname{tr}_{1,...,m} S^{(m)} (\tau + F[-1]_1) ... (\tau + F[-1]_m)$$

$$= \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$.

Theorem. All coefficients of the polynomial in $\tau = -d/dt$

$$\gamma_m(\omega) \operatorname{tr}_{1,\dots,m} S^{(m)} \left(\tau + F[-1]_1 \right) \dots \left(\tau + F[-1]_m \right)$$
$$= \phi_{m0} \tau^m + \phi_{m1} \tau^{m-1} + \dots + \phi_{mm}$$

belong to the Feigin–Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$.

In addition, in the case $\mathfrak{g} = \mathfrak{o}_{2n}$, the Pfaffian

$$Pf F[-1] = \frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2n}} sgn \, \sigma \cdot F_{\sigma(1) \, \sigma(2)'}[-1] \dots F_{\sigma(2n-1) \, \sigma(2n)'}[-1]$$

belongs to $\mathfrak{z}(\widehat{\mathfrak{o}}_{2n})$.

Moreover, $\,\phi_{2\,2},\phi_{4\,4},\ldots,\phi_{2n\,2n}\,$ is a complete set of

Segal–Sugawara vectors for \mathfrak{o}_{2n+1} and \mathfrak{sp}_{2n} , whereas

Moreover, $\phi_{22}, \phi_{44}, \dots, \phi_{2n\,2n}$ is a complete set of Segal–Sugawara vectors for \mathfrak{o}_{2n+1} and \mathfrak{sp}_{2n} , whereas

 $\phi_{22},\phi_{44},\ldots,\phi_{2n-2\,2n-2},\phi_n'$ is a complete set of Segal–Sugawara vectors for $\mathfrak{o}_{2n},$ where $\phi_n'=\operatorname{Pf} F[-1].$