Derangements in primitive permutation groups and applications

Hung P. Tong-Viet
University of Pretoria
Hung.Tong-Viet@up.ac.za

2015 CIMPA Research School on
Algebraic Lie Theory AIMS
July 28, 2015
(Joint work with Tim Burness)

Table of contents

(1) Introduction and Notation
(2) Existence
(3) Primitive groups

4 Proportions of derangements
(5) Derangements with special properties
(6) Groups with restriction on derangements
(7) Some open problems

Introduction and Notation

- Let Ω be a finite set of size $n>1$
- $\operatorname{Sym}(\Omega)$: the group of all permutations on Ω.

Introduction and Notation

- Let Ω be a finite set of size $n>1$
- $\operatorname{Sym}(\Omega)$: the group of all permutations on Ω.
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω.

Introduction and Notation

- Let Ω be a finite set of size $n>1$
- $\operatorname{Sym}(\Omega)$: the group of all permutations on Ω.
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω.
- $G_{\alpha}=\left\{g \in G: \alpha^{g}=\alpha\right\}$: the point stabilizer in G of $\alpha \in \Omega$.

Introduction and Notation

- Let Ω be a finite set of size $n>1$
- $\operatorname{Sym}(\Omega)$: the group of all permutations on Ω.
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω.
- $G_{\alpha}=\left\{g \in G: \alpha^{g}=\alpha\right\}$: the point stabilizer in G of $\alpha \in \Omega$.
- $x^{G}=\left\{x^{g}: g \in G\right\}$: a conjugacy class of G containing $x \in G$.

Introduction and Notation

- Let Ω be a finite set of size $n>1$
- $\operatorname{Sym}(\Omega)$: the group of all permutations on Ω.
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω.
- $G_{\alpha}=\left\{g \in G: \alpha^{g}=\alpha\right\}$: the point stabilizer in G of $\alpha \in \Omega$.
- $x^{G}=\left\{x^{g}: g \in G\right\}$: a conjugacy class of G containing $x \in G$.
- If $H \leq G$ and $g \in G$, then $H^{g}:=g^{-1} H g$.

Introduction and Notation

- Let Ω be a finite set of size $n>1$
- $\operatorname{Sym}(\Omega)$: the group of all permutations on Ω.
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω.
- $G_{\alpha}=\left\{g \in G: \alpha^{g}=\alpha\right\}$: the point stabilizer in G of $\alpha \in \Omega$.
- $x^{G}=\left\{x^{g}: g \in G\right\}$: a conjugacy class of G containing $x \in G$.
- If $H \leq G$ and $g \in G$, then $H^{g}:=g^{-1} H g$.

Introduction and Notation, cont.

Definition

- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on a finite set Ω.
- An element $x \in G$ is a derangement if it has no fixed point on Ω.

Introduction and Notation, cont.

Definition

- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on a finite set Ω.
- An element $x \in G$ is a derangement if it has no fixed point on Ω.
- Let $\Delta(G)$ be the set of all derangements in G.

Introduction and Notation, cont.

Definition

- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on a finite set Ω.
- An element $x \in G$ is a derangement if it has no fixed point on Ω.
- Let $\Delta(G)$ be the set of all derangements in G.
- We call $d(G)=\frac{|\Delta(G)|}{|G|}$ the proportion of derangements in G.

Introduction and Notation, cont.

Definition

- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on a finite set Ω.
- An element $x \in G$ is a derangement if it has no fixed point on Ω.
- Let $\Delta(G)$ be the set of all derangements in G.
- We call $d(G)=\frac{|\Delta(G)|}{|G|}$ the proportion of derangements in G.

Introduction and Notation, cont.

Example

Let $\Omega=\{1,2, \cdots, 5\}$ and $G=\operatorname{Sym}(\Omega)$. Then

- $x=(1,2,3,4,5)$ and $y=(1,2)(3,4,5)$ are derangements in G.

Introduction and Notation, cont.

Example

Let $\Omega=\{1,2, \cdots, 5\}$ and $G=\operatorname{Sym}(\Omega)$. Then

- $x=(1,2,3,4,5)$ and $y=(1,2)(3,4,5)$ are derangements in G.
- $\Delta(G)=x^{G} \cup y^{G}$.

Introduction and Notation, cont.

Example

Let $\Omega=\{1,2, \cdots, 5\}$ and $G=\operatorname{Sym}(\Omega)$. Then

- $x=(1,2,3,4,5)$ and $y=(1,2)(3,4,5)$ are derangements in G.
- $\Delta(G)=x^{G} \cup y^{G}$.
- $\left|x^{G}\right|=4!=24$ and $\left|y^{G}\right|=20$.

Introduction and Notation, cont.

Example

Let $\Omega=\{1,2, \cdots, 5\}$ and $G=\operatorname{Sym}(\Omega)$. Then

- $x=(1,2,3,4,5)$ and $y=(1,2)(3,4,5)$ are derangements in G.
- $\Delta(G)=x^{G} \cup y^{G}$.
- $\left|x^{G}\right|=4!=24$ and $\left|y^{G}\right|=20$.
- $|\triangle(G)|=24+20=44$.

Introduction and Notation, cont.

Example

Let $\Omega=\{1,2, \cdots, 5\}$ and $G=\operatorname{Sym}(\Omega)$. Then

- $x=(1,2,3,4,5)$ and $y=(1,2)(3,4,5)$ are derangements in G.
- $\Delta(G)=x^{G} \cup y^{G}$.
- $\left|x^{G}\right|=4!=24$ and $\left|y^{G}\right|=20$.
- $|\Delta(G)|=24+20=44$.
- $d(G)=\frac{|\Delta(G)|}{|G|}=\frac{44}{120}=\frac{11}{30}$.

Introduction and Notation, cont.

Example

Let $\Omega=\{1,2, \cdots, 5\}$ and $G=\operatorname{Sym}(\Omega)$. Then

- $x=(1,2,3,4,5)$ and $y=(1,2)(3,4,5)$ are derangements in G.
- $\Delta(G)=x^{G} \cup y^{G}$.
- $\left|x^{G}\right|=4!=24$ and $\left|y^{G}\right|=20$.
- $|\Delta(G)|=24+20=44$.
- $d(G)=\frac{|\Delta(G)|}{|G|}=\frac{44}{120}=\frac{11}{30}$.

Introduction and Notation, cont.

Lemma

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with $|\Omega|>1$ and let H be a point stabilizer. Then

$$
\Delta(G)=G \backslash \bigcup_{\alpha \in \Omega} G_{\alpha}=G \backslash \bigcup_{g \in G} H^{g} .
$$

Introduction and Notation, cont.

Lemma

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with $|\Omega|>1$ and let H be a point stabilizer. Then

$$
\Delta(G)=G \backslash \bigcup_{\alpha \in \Omega} G_{\alpha}=G \backslash \bigcup_{g \in G} H^{g} .
$$

In particular, $x \in \Delta(G)$ if and only if $x^{G} \cap H=\emptyset$.

Introduction and Notation, cont.

Lemma

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with $|\Omega|>1$ and let H be a point stabilizer. Then

$$
\Delta(G)=G \backslash \bigcup_{\alpha \in \Omega} G_{\alpha}=G \backslash \bigcup_{g \in G} H^{g} .
$$

In particular, $x \in \Delta(G)$ if and only if $x^{G} \cap H=\emptyset$.

Montmort's theorem

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group with $|\Omega|=n$.
- Question: What is the probability that a random chosen permutation in the symmetric group S_{n} is a derangement?

Montmort's theorem

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group with $|\Omega|=n$.
- Question: What is the probability that a random chosen permutation in the symmetric group S_{n} is a derangement?

Theorem (Montmort, 1708)

Montmort's theorem

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group with $|\Omega|=n$.
- Question: What is the probability that a random chosen permutation in the symmetric group S_{n} is a derangement?

Theorem (Montmort, 1708)

$$
d\left(\mathrm{~S}_{n}\right)=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

In particular, $d\left(\mathrm{~S}_{n}\right)$ \qquad

Montmort's theorem

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group with $|\Omega|=n$.
- Question: What is the probability that a random chosen permutation in the symmetric group S_{n} is a derangement?

Theorem (Montmort, 1708)

$$
d\left(\mathrm{~S}_{n}\right)=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

In particular, $d\left(\mathrm{~S}_{n}\right) \longrightarrow \frac{1}{e}$ as $n \longrightarrow \infty$.

Montmort's theorem - proof

The number of permutations of $\Omega=\{1,2, \cdots, n\}$ fixing a given set of k points is $(n-k)$!.

By the Inclusion-Exclusion principle, we have

$$
\left|\Delta\left(\mathrm{S}_{n}\right)\right|=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!
$$

Montmort's theorem - proof

The number of permutations of $\Omega=\{1,2, \cdots, n\}$ fixing a given set of k points is $(n-k)$!.

By the Inclusion-Exclusion principle, we have

$$
\begin{aligned}
\left|\Delta\left(\mathrm{S}_{n}\right)\right| & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!(n-k)!}(n-k)!
\end{aligned}
$$

Montmort's theorem - proof

The number of permutations of $\Omega=\{1,2, \cdots, n\}$ fixing a given set of k points is $(n-k)$!.

By the Inclusion-Exclusion principle, we have

$$
\begin{aligned}
\left|\Delta\left(\mathrm{S}_{n}\right)\right| & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!(n-k)!}(n-k)! \\
& =n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} .
\end{aligned}
$$

Montmort's theorem - proof

The number of permutations of $\Omega=\{1,2, \cdots, n\}$ fixing a given set of k points is $(n-k)$!.

By the Inclusion-Exclusion principle, we have

$$
\begin{aligned}
\left|\Delta\left(\mathrm{S}_{n}\right)\right| & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!(n-k)!}(n-k)! \\
& =n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} .
\end{aligned}
$$

Observation: The proportion $d\left(S_{n}\right)=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$ is the truncation of the Taylor series for e^{x} at $x=-1$.

Montmort's theorem - proof

The number of permutations of $\Omega=\{1,2, \cdots, n\}$ fixing a given set of k points is $(n-k)$!.

By the Inclusion-Exclusion principle, we have

$$
\begin{aligned}
\left|\Delta\left(\mathrm{S}_{n}\right)\right| & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!(n-k)!}(n-k)! \\
& =n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} .
\end{aligned}
$$

Observation: The proportion $d\left(\mathrm{~S}_{n}\right)=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$ is the truncation of the Taylor series for e^{x} at $x=-1$.

Montmort's theorem - Applications

Card shuffling

Suppose you have a deck of n cards, numbered $1,2, \cdots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: ' $1,2,3, \cdots$ '.
Question: What is the probability that there will be no coincidence?

Montmort's theorem - Applications

Card shuffling

Suppose you have a deck of n cards, numbered $1,2, \cdots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: ' $1,2,3, \cdots$ '.
Question: What is the probability that there will be no coincidence?
This game is also called 'Treize', 'Rencontres' or 'Montmort's matching problem'.

Montmort's theorem - Applications

Card shuffling

Suppose you have a deck of n cards, numbered $1,2, \cdots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: ' $1,2,3, \ldots$ '.
Question: What is the probability that there will be no coincidence?
This game is also called 'Treize', 'Rencontres' or 'Montmort's matching problem'.

Secretary problem

If a secretary types n letters and addresses the envelopes, then puts the letters in envelopes at random.

Montmort's theorem - Applications

Card shuffling

Suppose you have a deck of n cards, numbered $1,2, \cdots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: ' $1,2,3, \ldots$ '.
Question: What is the probability that there will be no coincidence?
This game is also called 'Treize', 'Rencontres' or 'Montmort's matching problem'.

Secretary problem

If a secretary types n letters and addresses the envelopes, then puts the letters in envelopes at random.
Question: What is the probability that nobody gets their correct letter?

Montmort's theorem - Applications

Card shuffling

Suppose you have a deck of n cards, numbered $1,2, \cdots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: ' $1,2,3, \ldots$ '.
Question: What is the probability that there will be no coincidence?
This game is also called 'Treize', 'Rencontres' or 'Montmort's matching problem'.

Secretary problem

If a secretary types n letters and addresses the envelopes, then puts the letters in envelopes at random.
Question: What is the probability that nobody gets their correct letter?

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \geq 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \geq 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

```
Orbit-Counting Lemma (Burnside's Lemma)
Let G\leq\operatorname{Sym}(\Omega)\mathrm{ be a finite permutation group. Then the number of}
orbits of G on \Omega}\mathrm{ is the average number of fixed points of elements of G.
```


Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \geq 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside's Lemma)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite permutation group. Then the number of orbits of G on Ω is the average number of fixed points of elements of G.

Let $\mathcal{F i x}(x)=\mathcal{F i x}_{\Omega}(x)=\left\{\alpha \in \Omega: \alpha^{x}=\alpha\right\}$.

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \geq 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside's Lemma)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite permutation group. Then the number of orbits of G on Ω is the average number of fixed points of elements of G.

Let $\mathcal{F} \mathrm{ix}(x)=\mathcal{F} \mathrm{ix}_{\Omega}(x)=\left\{\alpha \in \Omega: \alpha^{x}=\alpha\right\}$.
Let m be the number of G-orbits on Ω. Then

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \geq 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside's Lemma)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite permutation group. Then the number of orbits of G on Ω is the average number of fixed points of elements of G.

Let $\mathcal{F} \mathrm{ix}(x)=\mathcal{F} \mathrm{ix}_{\Omega}(x)=\left\{\alpha \in \Omega: \alpha^{x}=\alpha\right\}$.
Let m be the number of G-orbits on Ω. Then

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \geq 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside's Lemma)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite permutation group. Then the number of orbits of G on Ω is the average number of fixed points of elements of G.

Let $\mathcal{F} \operatorname{ix}(x)=\mathcal{F} \mathrm{ix}_{\Omega}(x)=\left\{\alpha \in \Omega: \alpha^{x}=\alpha\right\}$.
Let m be the number of G-orbits on Ω. Then

$$
m=\frac{1}{|G|} \sum_{g \in G}\left|\mathcal{F i x}{ }_{\Omega}(g)\right|
$$

A proof of Orbit-Counting Lemma

- Consider the bipartite graph 「 with vertex set $\Omega \cup G$ and there is an edge between $\alpha \in \Omega, g \in G$ iff $\alpha^{g}=\alpha$.
- Count the number of edges of Γ in two different ways.

A proof of Orbit-Counting Lemma

- Consider the bipartite graph 「 with vertex set $\Omega \cup G$ and there is an edge between $\alpha \in \Omega, g \in G$ iff $\alpha^{g}=\alpha$.
- Count the number of edges of Γ in two different ways.
- Let Δ be a G-orbit on Ω and $\alpha \in \Delta$.

A proof of Orbit-Counting Lemma

- Consider the bipartite graph 「 with vertex set $\Omega \cup G$ and there is an edge between $\alpha \in \Omega, g \in G$ iff $\alpha^{g}=\alpha$.
- Count the number of edges of Γ in two different ways.
- Let Δ be a G-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $\left|G_{\alpha}\right|=\frac{|G|}{|\Delta|}$.

A proof of Orbit-Counting Lemma

- Consider the bipartite graph 「 with vertex set $\Omega \cup G$ and there is an edge between $\alpha \in \Omega, g \in G$ iff $\alpha^{g}=\alpha$.
- Count the number of edges of Γ in two different ways.
- Let Δ be a G-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $\left|G_{\alpha}\right|=\frac{|G|}{|\Delta|}$.
- So Δ has $|G|$ edges and Γ has $m|G|$ edges.

A proof of Orbit-Counting Lemma

- Consider the bipartite graph 「 with vertex set $\Omega \cup G$ and there is an edge between $\alpha \in \Omega, g \in G$ iff $\alpha^{g}=\alpha$.
- Count the number of edges of Γ in two different ways.
- Let Δ be a G-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $\left|G_{\alpha}\right|=\frac{|G|}{|\Delta|}$.
- So Δ has $|G|$ edges and Γ has $m|G|$ edges.
- For $g \in G$, there are exactly $\left|\mathcal{F i x}_{\Omega}(g)\right|$ edges.

A proof of Orbit-Counting Lemma

- Consider the bipartite graph 「 with vertex set $\Omega \cup G$ and there is an edge between $\alpha \in \Omega, g \in G$ iff $\alpha^{g}=\alpha$.
- Count the number of edges of Γ in two different ways.
- Let Δ be a G-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $\left|G_{\alpha}\right|=\frac{|G|}{|\Delta|}$.
- So Δ has $|G|$ edges and Γ has $m|G|$ edges.
- For $g \in G$, there are exactly $\left|\mathcal{F} \mathrm{ix}_{\Omega}(g)\right|$ edges.
- So Γ has $\sum_{g \in G}\left|\mathcal{F i x}_{\Omega}(g)\right|$ edges.

A proof of Orbit-Counting Lemma

- Consider the bipartite graph Γ with vertex set $\Omega \cup G$ and there is an edge between $\alpha \in \Omega, g \in G$ iff $\alpha^{g}=\alpha$.
- Count the number of edges of Γ in two different ways.
- Let Δ be a G-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $\left|G_{\alpha}\right|=\frac{|G|}{|\Delta|}$.
- So Δ has $|G|$ edges and Γ has $m|G|$ edges.
- For $g \in G$, there are exactly $\left|\mathcal{F} \mathrm{ix}_{\Omega}(g)\right|$ edges.
- So Γ has $\sum_{g \in G}\left|\mathcal{F} \mathrm{ix}_{\Omega}(g)\right|$ edges.
- Therefore, $\sum_{g \in G}\left|\mathcal{F} i_{\Omega}(g)\right|=m|G|$.

A proof of Orbit-Counting Lemma

- Consider the bipartite graph 「 with vertex set $\Omega \cup G$ and there is an edge between $\alpha \in \Omega, g \in G$ iff $\alpha^{g}=\alpha$.
- Count the number of edges of Γ in two different ways.
- Let Δ be a G-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $\left|G_{\alpha}\right|=\frac{|G|}{|\Delta|}$.
- So Δ has $|G|$ edges and Γ has $m|G|$ edges.
- For $g \in G$, there are exactly $\left|\mathcal{F} \mathrm{ix}_{\Omega}(g)\right|$ edges.
- So Γ has $\sum_{g \in G}\left|\mathcal{F} \mathrm{ix}_{\Omega}(g)\right|$ edges.
- Therefore, $\sum_{g \in G}\left|\mathcal{F} \mathrm{ix}_{\Omega}(g)\right|=m|G|$.

Jordan's theorem-Variations

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.
- By Jordan's theorem, G always contains a derangement.

Jordan's theorem-Variations

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.
- By Jordan's theorem, G always contains a derangement.

Questions

- What is the proportion of derangements in G?

Jordan's theorem-Variations

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.
- By Jordan's theorem, G always contains a derangement.

Questions

- What is the proportion of derangements in G ?
- Does G contain derangements with special properties?

Jordan's theorem-Variations

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.
- By Jordan's theorem, G always contains a derangement.

Questions

- What is the proportion of derangements in G ?
- Does G contain derangements with special properties?
- What is the structure of G if we impose some restrictions on $\Delta(G)$?

Jordan's theorem-Variations

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.
- By Jordan's theorem, G always contains a derangement.

Questions

- What is the proportion of derangements in G ?
- Does G contain derangements with special properties?
- What is the structure of G if we impose some restrictions on $\Delta(G)$?

Primitivity

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with point stabilizer H.
- A nonempty subset $\Delta \subseteq \Omega$ is a block of G if $\Delta^{g}=\Delta$ or $\Delta^{g} \cap \Delta=\emptyset$ for all $g \in G$.

Primitivity

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with point stabilizer H.
- A nonempty subset $\Delta \subseteq \Omega$ is a block of G if $\Delta^{g}=\Delta$ or $\Delta^{g} \cap \Delta=\emptyset$ for all $g \in G$.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.

Primitivity

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with point stabilizer H.
- A nonempty subset $\Delta \subseteq \Omega$ is a block of G if $\Delta^{g}=\Delta$ or $\Delta^{g} \cap \Delta=\emptyset$ for all $g \in G$.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If $G=\mathrm{D}_{8} \leq \operatorname{Sym}(\Omega)$ is the group of symmetries of a square with vertex set $\Omega=\{1,2,3,4\}$, then $\{1,3\}$ is a nontrivial block of G.

Primitivity

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with point stabilizer H.
- A nonempty subset $\Delta \subseteq \Omega$ is a block of G if $\Delta^{g}=\Delta$ or $\Delta^{g} \cap \Delta=\emptyset$ for all $g \in G$.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If $G=\mathrm{D}_{8} \leq \operatorname{Sym}(\Omega)$ is the group of symmetries of a square with vertex set $\Omega=\{1,2,3,4\}$, then $\{1,3\}$ is a nontrivial block of G.

Definition

A transitive group $G \leq \operatorname{Sym}(\Omega)$ is imprimitive if G has a nontrivial block.

Primitivity

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with point stabilizer H.
- A nonempty subset $\Delta \subseteq \Omega$ is a block of G if $\Delta^{g}=\Delta$ or $\Delta^{g} \cap \Delta=\emptyset$ for all $g \in G$.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If $G=\mathrm{D}_{8} \leq \operatorname{Sym}(\Omega)$ is the group of symmetries of a square with vertex set $\Omega=\{1,2,3,4\}$, then $\{1,3\}$ is a nontrivial block of G.

Definition

A transitive group $G \leq \operatorname{Sym}(\Omega)$ is imprimitive if G has a nontrivial block. Otherwise, G is primitive.

Primitivity

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with point stabilizer H.
- A nonempty subset $\Delta \subseteq \Omega$ is a block of G if $\Delta^{g}=\Delta$ or $\Delta^{g} \cap \Delta=\emptyset$ for all $g \in G$.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If $G=\mathrm{D}_{8} \leq \operatorname{Sym}(\Omega)$ is the group of symmetries of a square with vertex set $\Omega=\{1,2,3,4\}$, then $\{1,3\}$ is a nontrivial block of G.

Definition

A transitive group $G \leq \operatorname{Sym}(\Omega)$ is imprimitive if G has a nontrivial block. Otherwise, G is primitive.

Equivalently, G is primitive if and only if the point stabilizer G_{α} is a maximal subgroup of G.

Primitivity

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with point stabilizer H.
- A nonempty subset $\Delta \subseteq \Omega$ is a block of G if $\Delta^{g}=\Delta$ or $\Delta^{g} \cap \Delta=\emptyset$ for all $g \in G$.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If $G=\mathrm{D}_{8} \leq \operatorname{Sym}(\Omega)$ is the group of symmetries of a square with vertex set $\Omega=\{1,2,3,4\}$, then $\{1,3\}$ is a nontrivial block of G.

Definition

A transitive group $G \leq \operatorname{Sym}(\Omega)$ is imprimitive if G has a nontrivial block. Otherwise, G is primitive.

Equivalently, G is primitive if and only if the point stabilizer G_{α} is a maximal subgroup of G.

Almost simple and Affine groups

Definition

A transitive group $G \leq \operatorname{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \unlhd G \leq \operatorname{Aut}(T)$.
G is primitive if and only if G_{α} is maximal in G.

Almost simple and Affine groups

Definition

A transitive group $G \leq \operatorname{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \unlhd G \leq \operatorname{Aut}(T)$.
G is primitive if and only if G_{α} is maximal in G.

Definition

Let p be a prime and let $V=\mathbb{Z}_{p}^{d}$. Let $\operatorname{AGL}(V)=V \rtimes \mathrm{GL}(V)$ be the group of affine transformations of V

$$
\tau_{x, u}(v)=v x+u(\text { for } x \in \operatorname{GL}(V), u \in V)
$$

Almost simple and Affine groups

Definition

A transitive group $G \leq \operatorname{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \unlhd G \leq \operatorname{Aut}(T)$.
G is primitive if and only if G_{α} is maximal in G.

Definition

Let p be a prime and let $V=\mathbb{Z}_{p}^{d}$. Let $\operatorname{AGL}(V)=V \rtimes \mathrm{GL}(V)$ be the group of affine transformations of V :

$$
\tau_{x, u}(v)=v x+u(\text { for } x \in \operatorname{GL}(V), u \in V)
$$

$G \leq \operatorname{Sym}(V)$ is affine if $V \unlhd G \leq \operatorname{AGL}(V)$.

Almost simple and Affine groups

Definition

A transitive group $G \leq \operatorname{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \unlhd G \leq \operatorname{Aut}(T)$.
G is primitive if and only if G_{α} is maximal in G.

Definition

Let p be a prime and let $V=\mathbb{Z}_{p}^{d}$. Let $\operatorname{AGL}(V)=V \rtimes \mathrm{GL}(V)$ be the group of affine transformations of V :

$$
\tau_{x, u}(v)=v x+u(\text { for } x \in \operatorname{GL}(V), u \in V)
$$

$G \leq \operatorname{Sym}(V)$ is affine if $V \unlhd G \leq \operatorname{AGL}(V)$.
G is primitive if and only if $G_{0} \leq G L(V)$ is irreducible.

Almost simple and Affine groups

Definition

A transitive group $G \leq \operatorname{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \unlhd G \leq \operatorname{Aut}(T)$.
G is primitive if and only if G_{α} is maximal in G.

Definition

Let p be a prime and let $V=\mathbb{Z}_{p}^{d}$. Let $\operatorname{AGL}(V)=V \rtimes \mathrm{GL}(V)$ be the group of affine transformations of V :

$$
\tau_{x, u}(v)=v x+u(\text { for } x \in \operatorname{GL}(V), u \in V)
$$

$G \leq \operatorname{Sym}(V)$ is affine if $V \unlhd G \leq \operatorname{AGL}(V)$.
G is primitive if and only if $G_{0} \leq \mathrm{GL}(V)$ is irreducible.

O'Nan-Scott-Aschbacher Theorem

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:
(1) G is almost simple.

O'Nan-Scott-Aschbacher Theorem

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:
(1) G is almost simple.
(2) G is of affine type.

O'Nan-Scott-Aschbacher Theorem

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:
(1) G is almost simple.
(2) G is of affine type.
(3) G is of diagonal type.

O'Nan-Scott-Aschbacher Theorem

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:
(1) G is almost simple.
(2) G is of affine type.
(3) G is of diagonal type.
(9) G is of product type.

O'Nan-Scott-Aschbacher Theorem

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:
(1) G is almost simple.
(2) G is of affine type.
(3) G is of diagonal type.
(9) G is of product type.
(3) G is of twisted wreath product type.

O'Nan-Scott-Aschbacher Theorem

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:
(1) G is almost simple.
(2) G is of affine type.
(3) G is of diagonal type.
(9) G is of product type.
(5) G is of twisted wreath product type.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.
- We have $d(G)>0$ by Jordan's theorem.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.
- We have $d(G)>0$ by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

$d(G) \geq \frac{1}{n}$ with equality if and only if G is sharply 2 -transitive.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.
- We have $d(G)>0$ by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

$d(G) \geq \frac{1}{n}$ with equality if and only if G is sharply 2 -transitive.

- G is 2-transitive if the natural action of G on $\Gamma=\{(\alpha, \beta): \alpha \neq \beta \in \Omega\}$ is transitive.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.
- We have $d(G)>0$ by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

$d(G) \geq \frac{1}{n}$ with equality if and only if G is sharply 2 -transitive.

- G is 2-transitive if the natural action of G on $\Gamma=\{(\alpha, \beta): \alpha \neq \beta \in \Omega\}$ is transitive.
- It is sharply 2-transitive if furthermore, $G_{(\alpha, \beta)}=1$ for some $(\alpha, \beta) \in \Gamma$.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.
- We have $d(G)>0$ by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

$d(G) \geq \frac{1}{n}$ with equality if and only if G is sharply 2-transitive.

- G is 2-transitive if the natural action of G on $\Gamma=\{(\alpha, \beta): \alpha \neq \beta \in \Omega\}$ is transitive.
- It is sharply 2-transitive if furthermore, $G_{(\alpha, \beta)}=1$ for some $(\alpha, \beta) \in \Gamma$.
- This bound is best possible but we can get better bounds by allowing more exceptions.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.
- We have $d(G)>0$ by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

$d(G) \geq \frac{1}{n}$ with equality if and only if G is sharply 2 -transitive.

- G is 2-transitive if the natural action of G on $\Gamma=\{(\alpha, \beta): \alpha \neq \beta \in \Omega\}$ is transitive.
- It is sharply 2-transitive if furthermore, $G_{(\alpha, \beta)}=1$ for some $(\alpha, \beta) \in \Gamma$.
- This bound is best possible but we can get better bounds by allowing more exceptions.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.

Theorem (Guralnick-Wan, 1997)

One of the following holds.

- $d(G) \geq 2 / n$.
- G is sharply 2-transitive.
- $(G, n, d(G))=\left(\mathrm{S}_{5}, 5,11 / 30\right)$ or $\left(\mathrm{S}_{4}, 4,3 / 8\right)$.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.

Theorem (Guralnick-Wan, 1997)

One of the following holds.

- $d(G) \geq 2 / n$.
- G is sharply 2-transitive.
- $(G, n, d(G))=\left(\mathrm{S}_{5}, 5,11 / 30\right)$ or $\left(\mathrm{S}_{4}, 4,3 / 8\right)$.
- The proof uses the classification of 2-transitive groups.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.

Theorem (Guralnick-Wan, 1997)

One of the following holds.

- $d(G) \geq 2 / n$.
- G is sharply 2-transitive.
- $(G, n, d(G))=\left(\mathrm{S}_{5}, 5,11 / 30\right)$ or $\left(\mathrm{S}_{4}, 4,3 / 8\right)$.
- The proof uses the classification of 2-transitive groups.
- This result has applications to algebraic curves over finite fields.

Bounding $d(G)$ in terms of the degree

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with $n=|\Omega| \geq 2$.

Theorem (Guralnick-Wan, 1997)

One of the following holds.

- $d(G) \geq 2 / n$.
- G is sharply 2-transitive.
- $(G, n, d(G))=\left(\mathrm{S}_{5}, 5,11 / 30\right)$ or $\left(\mathrm{S}_{4}, 4,3 / 8\right)$.
- The proof uses the classification of 2-transitive groups.
- This result has applications to algebraic curves over finite fields.

Bounding $d(G)$ in terms of the rank

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with $n=|\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

$d(G) \leq 1-\frac{1}{r}$ with equality if and only if G acts regularly.

Bounding $d(G)$ in terms of the rank

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with $n=|\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

$d(G) \leq 1-\frac{1}{r}$ with equality if and only if G acts regularly.

- Let π be the permutation character of G.

Bounding $d(G)$ in terms of the rank

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with $n=|\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

$d(G) \leq 1-\frac{1}{r}$ with equality if and only if G acts regularly.

- Let π be the permutation character of G.
- Observe that $(\pi, \pi)=r$ and $\pi(g)=0$ for all $g \in \Delta(G)$. We have

Bounding $d(G)$ in terms of the rank

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with $n=|\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

$d(G) \leq 1-\frac{1}{r}$ with equality if and only if G acts regularly.

- Let π be the permutation character of G.
- Observe that $(\pi, \pi)=r$ and $\pi(g)=0$ for all $g \in \Delta(G)$. We have

Bounding $d(G)$ in terms of the rank

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with $n=|\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

$d(G) \leq 1-\frac{1}{r}$ with equality if and only if G acts regularly.

- Let π be the permutation character of G.
- Observe that $(\pi, \pi)=r$ and $\pi(g)=0$ for all $g \in \Delta(G)$. We have

$$
r|G|=\sum_{g \in G} \pi(g)^{2}=\sum_{g \in G \backslash \Delta(G)} \pi(g)^{2} \geq \frac{1}{|G|-|\Delta(G)|}\left(\sum_{g \in G \backslash \Delta(G)} \pi(g)\right)^{2}
$$

- As $\left(\pi, 1_{G}\right)=1$ we have $|G|=\sum_{g \in G} \pi(g)=\sum_{g \in G \backslash \Delta(G)} \pi(g)$.
- So $r|G| \geq \frac{|G|^{2}}{|G|-|\Delta(G)|}$ and the first part holds.

Bounding $d(G)$ in terms of the rank

- Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group with $n=|\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

$d(G) \leq 1-\frac{1}{r}$ with equality if and only if G acts regularly.

- Let π be the permutation character of G.
- Observe that $(\pi, \pi)=r$ and $\pi(g)=0$ for all $g \in \Delta(G)$. We have

$$
r|G|=\sum_{g \in G} \pi(g)^{2}=\sum_{g \in G \backslash \Delta(G)} \pi(g)^{2} \geq \frac{1}{|G|-|\Delta(G)|}\left(\sum_{g \in G \backslash \Delta(G)} \pi(g)\right)^{2}
$$

- As $\left(\pi, 1_{G}\right)=1$ we have $|G|=\sum_{g \in G} \pi(g)=\sum_{g \in G \backslash \Delta(G)} \pi(g)$.
- So $r|G| \geq \frac{|G|^{2}}{|G|-|\Delta(G)|}$ and the first part holds.

Simple groups

- Montmort's theorem: $d\left(\mathrm{~S}_{n}\right) \geq \frac{1}{e}$.
- Question: what is the asymptotic behavior of $d(G)$ for other infinite families of groups?

Simple groups

- Montmort's theorem: $d\left(\mathrm{~S}_{n}\right) \geq \frac{1}{e}$.
- Question: what is the asymptotic behavior of $d(G)$ for other infinite families of groups?
- $d\left(\mathrm{~A}_{n}\right) \geq \frac{1}{3}$ and $d\left(\operatorname{PSL}_{2}(q)\right) \geq \frac{1}{3}$ for all $n, q \geq 5$.

Simple groups

- Montmort's theorem: $d\left(\mathrm{~S}_{n}\right) \geq \frac{1}{e}$.
- Question: what is the asymptotic behavior of $d(G)$ for other infinite families of groups?
- $d\left(\mathrm{~A}_{n}\right) \geq \frac{1}{3}$ and $d\left(\operatorname{PSL}_{2}(q)\right) \geq \frac{1}{3}$ for all $n, q \geq 5$.

Theorem (Fulman-Guralnick, 2014)

There exists an absolute constant $\epsilon>0$ so that $d(G)>\epsilon$ for all simple transitive group G.

Simple groups

- Montmort's theorem: $d\left(\mathrm{~S}_{n}\right) \geq \frac{1}{e}$.
- Question: what is the asymptotic behavior of $d(G)$ for other infinite families of groups?
- $d\left(\mathrm{~A}_{n}\right) \geq \frac{1}{3}$ and $d\left(\operatorname{PSL}_{2}(q)\right) \geq \frac{1}{3}$ for all $n, q \geq 5$.

Theorem (Fulman-Guralnick, 2014)

There exists an absolute constant $\epsilon>0$ so that $d(G)>\epsilon$ for all simple transitive group G.

- The absolute constant ϵ is unknown.

Simple groups

- Montmort's theorem: $d\left(\mathrm{~S}_{n}\right) \geq \frac{1}{e}$.
- Question: what is the asymptotic behavior of $d(G)$ for other infinite families of groups?
- $d\left(\mathrm{~A}_{n}\right) \geq \frac{1}{3}$ and $d\left(\operatorname{PSL}_{2}(q)\right) \geq \frac{1}{3}$ for all $n, q \geq 5$.

Theorem (Fulman-Guralnick, 2014)

There exists an absolute constant $\epsilon>0$ so that $d(G)>\epsilon$ for all simple transitive group G.

- The absolute constant ϵ is unknown.
- This confirms a conjecture due to Boston et al. (1993) and Shalev.

Simple groups

- Montmort's theorem: $d\left(\mathrm{~S}_{n}\right) \geq \frac{1}{e}$.
- Question: what is the asymptotic behavior of $d(G)$ for other infinite families of groups?
- $d\left(\mathrm{~A}_{n}\right) \geq \frac{1}{3}$ and $d\left(\operatorname{PSL}_{2}(q)\right) \geq \frac{1}{3}$ for all $n, q \geq 5$.

Theorem (Fulman-Guralnick, 2014)

There exists an absolute constant $\epsilon>0$ so that $d(G)>\epsilon$ for all simple transitive group G.

- The absolute constant ϵ is unknown.
- This confirms a conjecture due to Boston et al. (1993) and Shalev.

Derangements of prime power order

Question: Does G contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

Derangements of prime power order

Question: Does G contain derangements of prime power order?
Theorem (Fein, Kantor, Schacher, 1981)
Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with $|G|$ minimal.

Derangements of prime power order

Question: Does G contain derangements of prime power order?
Theorem (Fein, Kantor, Schacher, 1981)
Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with $|G|$ minimal.
- We can assume that G is primitive.

Derangements of prime power order

Question: Does G contain derangements of prime power order?
Theorem (Fein, Kantor, Schacher, 1981)
Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with $|G|$ minimal.
- We can assume that G is primitive.
- Let $1 \neq N \unlhd G$. Then N is transitive. So by the minimality of $|G|$, we can assume $N=G$. Thus G is a simple group.

Derangements of prime power order

Question: Does G contain derangements of prime power order?
Theorem (Fein, Kantor, Schacher, 1981)
Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with $|G|$ minimal.
- We can assume that G is primitive.
- Let $1 \neq N \unlhd G$. Then N is transitive. So by the minimality of $|G|$, we can assume $N=G$. Thus G is a simple group.

Question: Find a proof of FKS-theorem without using the classification.

Derangements of prime power order

Question: Does G contain derangements of prime power order?
Theorem (Fein, Kantor, Schacher, 1981)
Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with $|G|$ minimal.
- We can assume that G is primitive.
- Let $1 \neq N \unlhd G$. Then N is transitive. So by the minimality of $|G|$, we can assume $N=G$. Thus G is a simple group.

Question: Find a proof of FKS-theorem without using the classification.

Theorem

Let L / K be a finite extension of global fields with $L \neq K$. Then the relative Brauer group $B(L / K)$ is infinite.

Derangements of prime power order

Question: Does G contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with $|G|$ minimal.
- We can assume that G is primitive.
- Let $1 \neq N \unlhd G$. Then N is transitive. So by the minimality of $|G|$, we can assume $N=G$. Thus G is a simple group.

Question: Find a proof of FKS-theorem without using the classification.

Theorem

Let L / K be a finite extension of global fields with $L \neq K$. Then the relative Brauer group $B(L / K)$ is infinite.

Elusive groups

Question: Does transitive group contain derangements of prime order?

- Let $G=\mathrm{M}_{11}, H=\operatorname{PSL}_{2}(11)$ and $\Omega=G / H$.

Elusive groups

Question: Does transitive group contain derangements of prime order?

- Let $G=\mathrm{M}_{11}, H=\operatorname{PSL}_{2}(11)$ and $\Omega=G / H$.
- Then every element in $\Delta(G)$ has order 4 or 8.

Elusive groups

Question: Does transitive group contain derangements of prime order?

- Let $G=\mathrm{M}_{11}, H=\operatorname{PSL}_{2}(11)$ and $\Omega=G / H$.
- Then every element in $\Delta(G)$ has order 4 or 8.

A transitive group is elusive if it has no derangement of prime order.

Elusive groups

Question: Does transitive group contain derangements of prime order?

- Let $G=\mathrm{M}_{11}, H=\operatorname{PSL}_{2}(11)$ and $\Omega=G / H$.
- Then every element in $\Delta(G)$ has order 4 or 8 .

A transitive group is elusive if it has no derangement of prime order.

Theorem (Giudici, 2003)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive elusive group. Then $G=\mathrm{M}_{11}$ 亿 L acting with its product action on $\Omega=\Gamma^{k}$, where $k \geq 1, L \leq S_{k}$ is transitive and $|\Gamma|=12$.

Elusive groups

Question: Does transitive group contain derangements of prime order?

- Let $G=\mathrm{M}_{11}, H=\operatorname{PSL}_{2}(11)$ and $\Omega=G / H$.
- Then every element in $\Delta(G)$ has order 4 or 8 .

A transitive group is elusive if it has no derangement of prime order.

Theorem (Giudici, 2003)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive elusive group. Then $G=\mathrm{M}_{11}$ 乙 L acting with its product action on $\Omega=\Gamma^{k}$, where $k \geq 1, L \leq S_{k}$ is transitive and $|\Gamma|=12$.

Conjecture (Marušič, 1981)

Every finite vertex-transitive digraph contains a derangement of prime order.

Elusive groups

Question: Does transitive group contain derangements of prime order?

- Let $G=\mathrm{M}_{11}, H=\operatorname{PSL}_{2}(11)$ and $\Omega=G / H$.
- Then every element in $\Delta(G)$ has order 4 or 8.

A transitive group is elusive if it has no derangement of prime order.

Theorem (Giudici, 2003)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive elusive group. Then $G=\mathrm{M}_{11}$ 乙 L acting with its product action on $\Omega=\Gamma^{k}$, where $k \geq 1, L \leq S_{k}$ is transitive and $|\Gamma|=12$.

Conjecture (Marušič, 1981)

Every finite vertex-transitive digraph contains a derangement of prime order.

Conjugacy classes

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.

Conjugacy classes

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \geq 1$.

Conjugacy classes

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \geq 1$.

Theorem (Burness \&T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G)=1$ if and only if

Conjugacy classes

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \geq 1$.

Theorem (Burness \&T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G)=1$ if and only if

- G is sharply 2 -transitive or

Conjugacy classes

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \geq 1$.

Theorem (Burness \&T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G)=1$ if and only if

- G is sharply 2-transitive or
- $(G, n)=\left(\mathrm{A}_{5}, 6\right)$ or $\left(\operatorname{Aut}\left(\mathrm{PSL}_{2}(8)\right), 28\right)$.

Conjugacy classes

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \geq 1$.

Theorem (Burness \&T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G)=1$ if and only if

- G is sharply 2-transitive or
- $(G, n)=\left(\mathrm{A}_{5}, 6\right)$ or $\left(\operatorname{Aut}\left(\mathrm{PSL}_{2}(8)\right), 28\right)$.
- 'Primitivity' was replaced by 'transitivity' by (Guralnick, 2015).

Conjugacy classes

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \geq 1$.

Theorem (Burness \&T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G)=1$ if and only if

- G is sharply 2-transitive or
- $(G, n)=\left(\mathrm{A}_{5}, 6\right)$ or $\left(\operatorname{Aut}\left(\mathrm{PSL}_{2}(8)\right), 28\right)$.
- 'Primitivity' was replaced by 'transitivity' by (Guralnick, 2015).
- For almost simple groups G, we have $\kappa(G) \rightarrow \infty$ when $|G| \rightarrow \infty$.

Conjugacy classes

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \geq 1$.

Theorem (Burness \&T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G)=1$ if and only if

- G is sharply 2-transitive or
- $(G, n)=\left(\mathrm{A}_{5}, 6\right)$ or $\left(\operatorname{Aut}\left(\mathrm{PSL}_{2}(8)\right), 28\right)$.
- 'Primitivity' was replaced by 'transitivity' by (Guralnick, 2015).
- For almost simple groups G, we have $\kappa(G) \rightarrow \infty$ when $|G| \rightarrow \infty$.

Proof

Theorem (Reduction)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G)=1$ if and only if G is almost simple or G is sharply 2 -transitive.

Proof

Theorem (Reduction)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G)=1$ if and only if G is almost simple or G is sharply 2 -transitive.

- Suppose $\Delta(G)=x^{G}$.
- Let $N \unlhd G$ and $H=G_{\alpha}$. Then N is transitive and $G=H N$.

Proof

Theorem (Reduction)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G)=1$ if and only if G is almost simple or G is sharply 2 -transitive.

- Suppose $\Delta(G)=x^{G}$.
- Let $N \unlhd G$ and $H=G_{\alpha}$. Then N is transitive and $G=H N$.
- Case N is regular: $H \cap N=1$ and $N=\{1\} \cup x^{G}$.

Proof

Theorem (Reduction)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G)=1$ if and only if G is almost simple or G is sharply 2 -transitive.

- Suppose $\Delta(G)=x^{G}$.
- Let $N \unlhd G$ and $H=G_{\alpha}$. Then N is transitive and $G=H N$.
- Case N is regular: $H \cap N=1$ and $N=\{1\} \cup x^{G}$.
- If N is nonabelian, then $|N|$ is divisible by at least 3 primes. Thus N is abelain and so $N \leq \mathrm{C}_{G}(x)$.

Proof

Theorem (Reduction)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G)=1$ if and only if G is almost simple or G is sharply 2 -transitive.

- Suppose $\Delta(G)=x^{G}$.
- Let $N \unlhd G$ and $H=G_{\alpha}$. Then N is transitive and $G=H N$.
- Case N is regular: $H \cap N=1$ and $N=\{1\} \cup x^{G}$.
- If N is nonabelian, then $|N|$ is divisible by at least 3 primes. Thus N is abelain and so $N \leq \mathrm{C}_{G}(x)$.
- $|\Delta(G)|=\left|G: C_{G}(x)\right| \leq|G: N|=|H|=|G| / n$. Thus $d(G) \leq \frac{1}{n}$.

Proof

Theorem (Reduction)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G)=1$ if and only if G is almost simple or G is sharply 2 -transitive.

- Suppose $\Delta(G)=x^{G}$.
- Let $N \unlhd G$ and $H=G_{\alpha}$. Then N is transitive and $G=H N$.
- Case N is regular: $H \cap N=1$ and $N=\{1\} \cup x^{G}$.
- If N is nonabelian, then $|N|$ is divisible by at least 3 primes. Thus N is abelain and so $N \leq \mathrm{C}_{G}(x)$.
- $|\Delta(G)|=\left|G: \mathrm{C}_{G}(x)\right| \leq|G: N|=|H|=|G| / n$. Thus $d(G) \leq \frac{1}{n}$.
- However, Cameron-Cohen implies that $d(G) \geq \frac{1}{n}$ with equality iff G is sharply 2-transitive.

Proof

Theorem (Reduction)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G)=1$ if and only if G is almost simple or G is sharply 2-transitive.

- Suppose $\Delta(G)=x^{G}$.
- Let $N \unlhd G$ and $H=G_{\alpha}$. Then N is transitive and $G=H N$.
- Case N is regular: $H \cap N=1$ and $N=\{1\} \cup x^{G}$.
- If N is nonabelian, then $|N|$ is divisible by at least 3 primes. Thus N is abelain and so $N \leq \mathrm{C}_{G}(x)$.
- $|\Delta(G)|=\left|G: \mathrm{C}_{G}(x)\right| \leq|G: N|=|H|=|G| / n$. Thus $d(G) \leq \frac{1}{n}$.
- However, Cameron-Cohen implies that $d(G) \geq \frac{1}{n}$ with equality iff G is sharply 2-transitive.
- Case N is not regular: G is almost simple.

Proof

Theorem (Reduction)

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G)=1$ if and only if G is almost simple or G is sharply 2 -transitive.

- Suppose $\Delta(G)=x^{G}$.
- Let $N \unlhd G$ and $H=G_{\alpha}$. Then N is transitive and $G=H N$.
- Case N is regular: $H \cap N=1$ and $N=\{1\} \cup x^{G}$.
- If N is nonabelian, then $|N|$ is divisible by at least 3 primes. Thus N is abelain and so $N \leq \mathrm{C}_{G}(x)$.
- $|\Delta(G)|=\left|G: \mathrm{C}_{G}(x)\right| \leq|G: N|=|H|=|G| / n$. Thus $d(G) \leq \frac{1}{n}$.
- However, Cameron-Cohen implies that $d(G) \geq \frac{1}{n}$ with equality iff G is sharply 2-transitive.
- Case N is not regular: G is almost simple.

Proof - Almost simple groups

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;

Proof - Almost simple groups

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_{n} wih $n \geq 5$;

Proof - Almost simple groups

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_{n} wih $n \geq 5$;
- a finite simple group of Lie type.

Proof - Almost simple groups

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_{n} wih $n \geq 5$;
- a finite simple group of Lie type.
- Use GAP or ATLAS for sporadic simple groups.

Proof - Almost simple groups

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_{n} wih $n \geq 5$;
- a finite simple group of Lie type.
- Use GAP or ATLAS for sporadic simple groups.
- (Jordan's theorem) If G is a primitive group of degree n containing a cycle of prime length fixing at least 3 points, then $A_{n} \leq G$.

Proof - Almost simple groups

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_{n} wih $n \geq 5$;
- a finite simple group of Lie type.
- Use GAP or ATLAS for sporadic simple groups.
- (Jordan's theorem) If G is a primitive group of degree n containing a cycle of prime length fixing at least 3 points, then $A_{n} \leq G$.
- For groups of Lie type G with simple socle T, choose two distinct conjugacy classes x_{1}^{G} and x_{2}^{G}, where $x_{i} \in T$ such that both $x_{i}^{\prime} s$ lie in a small number of maximal subgroups of G.

Proof - Almost simple groups

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_{n} wih $n \geq 5$;
- a finite simple group of Lie type.
- Use GAP or ATLAS for sporadic simple groups.
- (Jordan's theorem) If G is a primitive group of degree n containing a cycle of prime length fixing at least 3 points, then $A_{n} \leq G$.
- For groups of Lie type G with simple socle T, choose two distinct conjugacy classes x_{1}^{G} and x_{2}^{G}, where $x_{i} \in T$ such that both x_{i}^{\prime} s lie in a small number of maximal subgroups of G.

Zeros of characters

- Let G be a finite group and let $\operatorname{Irr}(G)$ be the set of complex irreducible characters of G.
- Let $\chi \in \operatorname{Irr}(G)$ with $\chi(1)>1$.

Zeros of characters

- Let G be a finite group and let $\operatorname{Irr}(G)$ be the set of complex irreducible characters of G.
- Let $\chi \in \operatorname{Irr}(G)$ with $\chi(1)>1$.
- (Burnside's theorem, 1911): $\chi(g)=0$ for some $g \in G$.

Zeros of characters

- Let G be a finite group and let $\operatorname{Irr}(G)$ be the set of complex irreducible characters of G.
- Let $\chi \in \operatorname{Irr}(G)$ with $\chi(1)>1$.
- (Burnside's theorem, 1911): $\chi(g)=0$ for some $g \in G$.
- (Malle, Navarro, Olsson, 2000): $\chi(g)=0$ for some $g \in G$ of prime power order.

Zeros of characters

- Let G be a finite group and let $\operatorname{Irr}(G)$ be the set of complex irreducible characters of G.
- Let $\chi \in \operatorname{Irr}(G)$ with $\chi(1)>1$.
- (Burnside's theorem, 1911): $\chi(g)=0$ for some $g \in G$.
- (Malle, Navarro, Olsson, 2000): $\chi(g)=0$ for some $g \in G$ of prime power order.
- Let $n(\chi)$ be the number of G-classes on which G vanishes.

Zeros of characters

- Let G be a finite group and let $\operatorname{Irr}(G)$ be the set of complex irreducible characters of G.
- Let $\chi \in \operatorname{Irr}(G)$ with $\chi(1)>1$.
- (Burnside's theorem, 1911): $\chi(g)=0$ for some $g \in G$.
- (Malle, Navarro, Olsson, 2000): $\chi(g)=0$ for some $g \in G$ of prime power order.
- Let $n(\chi)$ be the number of G-classes on which G vanishes.

Problem

Classify all the pairs (G, χ) with $n(\chi)=1$ for some nonlinear $\chi \in \operatorname{Irr}(G)$.

Zeros of characters

- Let G be a finite group and let $\operatorname{Irr}(G)$ be the set of complex irreducible characters of G.
- Let $\chi \in \operatorname{Irr}(G)$ with $\chi(1)>1$.
- (Burnside's theorem, 1911): $\chi(g)=0$ for some $g \in G$.
- (Malle, Navarro, Olsson, 2000): $\chi(g)=0$ for some $g \in G$ of prime power order.
- Let $n(\chi)$ be the number of G-classes on which G vanishes.

Problem

Classify all the pairs (G, χ) with $n(\chi)=1$ for some nonlinear $\chi \in \operatorname{Irr}(G)$.

Zeros of characters

- If χ is imprimitive, i.e., $\chi=\theta^{G}$ for some $\theta \in \operatorname{Irr}(H)$ with $H<G$, then $n(\chi)=1$ implies that $G \backslash \cup_{g \in G} H^{g}=x^{G}$ for some $g \in G$.
- If H is core-free, then our theorem applies.

Zeros of characters

- If χ is imprimitive, i.e., $\chi=\theta^{G}$ for some $\theta \in \operatorname{Irr}(H)$ with $H<G$, then $n(\chi)=1$ implies that $G \backslash \cup_{g \in G} H^{g}=x^{G}$ for some $g \in G$.
- If H is core-free, then our theorem applies.
- In general, we obtain some restriction on the normal structure of G.

Zeros of characters

- If χ is imprimitive, i.e., $\chi=\theta^{G}$ for some $\theta \in \operatorname{Irr}(H)$ with $H<G$, then $n(\chi)=1$ implies that $G \backslash \cup_{g \in G} H^{g}=x^{G}$ for some $g \in G$.
- If H is core-free, then our theorem applies.
- In general, we obtain some restriction on the normal structure of G.

Remarks

- If $G \leq \operatorname{Sym}(\Omega)$ is primitive and $\kappa(G)=2$, then G is either almost simple or affine.

Zeros of characters

- If χ is imprimitive, i.e., $\chi=\theta^{G}$ for some $\theta \in \operatorname{Irr}(H)$ with $H<G$, then $n(\chi)=1$ implies that $G \backslash \cup_{g \in G} H^{g}=x^{G}$ for some $g \in G$.
- If H is core-free, then our theorem applies.
- In general, we obtain some restriction on the normal structure of G.

Remarks

- If $G \leq \operatorname{Sym}(\Omega)$ is primitive and $\kappa(G)=2$, then G is either almost simple or affine.
- If $\Delta(G)=x^{G}$, then every element in $\Delta(G)$ has the same order which is a power of some prime.

Zeros of characters

- If χ is imprimitive, i.e., $\chi=\theta^{G}$ for some $\theta \in \operatorname{Irr}(H)$ with $H<G$, then $n(\chi)=1$ implies that $G \backslash \cup_{g \in G} H^{g}=x^{G}$ for some $g \in G$.
- If H is core-free, then our theorem applies.
- In general, we obtain some restriction on the normal structure of G.

Remarks

- If $G \leq \operatorname{Sym}(\Omega)$ is primitive and $\kappa(G)=2$, then G is either almost simple or affine.
- If $\Delta(G)=x^{G}$, then every element in $\Delta(G)$ has the same order which is a power of some prime.

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): G has a derangement of prime power order.

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): G has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)
 If every derangement in G is an involution, then either

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): G has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

- G is an elementary abelian 2-group; or

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): G has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

- G is an elementary abelian 2-group; or
- G is a Frobenius group with an elementary abelian 2-group kernel.

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): G has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

- G is an elementary abelian 2-group; or
- G is a Frobenius group with an elementary abelian 2-group kernel.

Problem 1: Classify transitive groups in which all derangements have prime order $p>2$.

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): G has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

- G is an elementary abelian 2-group; or
- G is a Frobenius group with an elementary abelian 2-group kernel.

Problem 1: Classify transitive groups in which all derangements have prime order $p>2$.

Problem 2: Classify transitive groups whose all derangements are r-elements for some fixed prime r.

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): G has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

- G is an elementary abelian 2-group; or
- G is a Frobenius group with an elementary abelian 2-group kernel.

Problem 1: Classify transitive groups in which all derangements have prime order $p>2$.

Problem 2: Classify transitive groups whose all derangements are r-elements for some fixed prime r.

Prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.
- Property $\left(^{*}\right)$: Every derangement in G is an r-element for some fixed prime r.

Prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.
- Property $\left(^{*}\right)$: Every derangement in G is an r-element for some fixed prime r.

Theorem (Burness \& TV, 2014)

- If $\left(^{*}\right)$ holds, then G is either almost simple or affine.

Prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.
- Property $\left(^{*}\right)$: Every derangement in G is an r-element for some fixed prime r.

Theorem (Burness \& TV, 2014)

- If $\left(^{*}\right)$ holds, then G is either almost simple or affine.
- The almost simple groups satisfying (*) are completely classified. We have $\operatorname{Soc}(G)=\operatorname{PSL}_{2}(q), \operatorname{PSL}_{3}(q)$ for some prime power q or $(G, H)=\left(\mathrm{M}_{11}, \mathrm{PSL}_{2}(11)\right)$.

Prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.
- Property $\left(^{*}\right)$: Every derangement in G is an r-element for some fixed prime r.

Theorem (Burness \& TV, 2014)

- If $\left({ }^{*}\right)$ holds, then G is either almost simple or affine.
- The almost simple groups satisfying $\left(^{*}\right)$ are completely classified. We have $\operatorname{Soc}(G)=\operatorname{PSL}_{2}(q), \operatorname{PSL}_{3}(q)$ for some prime power q or $(G, H)=\left(\mathrm{M}_{11}, \mathrm{PSL}_{2}(11)\right)$.
- If $G \leq \operatorname{AGL}(\mathrm{V})$ is affine with $V=\mathbb{Z}_{p}^{d}$, then $\left(^{*}\right)$ holds iff $r=p$ and every two point stabilizer in G is an r-group.

Prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.
- Property $\left(^{*}\right)$: Every derangement in G is an r-element for some fixed prime r.

Theorem (Burness \& TV, 2014)

- If $\left({ }^{*}\right)$ holds, then G is either almost simple or affine.
- The almost simple groups satisfying (*) are completely classified. We have $\operatorname{Soc}(G)=\operatorname{PSL}_{2}(q), \operatorname{PSL}_{3}(q)$ for some prime power q or $(G, H)=\left(\mathrm{M}_{11}, \mathrm{PSL}_{2}(11)\right)$.
- If $G \leq \operatorname{AGL}(\mathrm{V})$ is affine with $V=\mathbb{Z}_{p}^{d}$, then $\left(^{*}\right)$ holds iff $r=p$ and every two point stabilizer in G is an r-group.

Some connections

- The affine groups with property (*) have been studied extensively. - (Guralnick, Wan, 1992): Structure of Galois field extension

Some connections

- The affine groups with property (*) have been studied extensively.
- (Guralnick, Wan, 1992): Structure of Galois field extension
- (Fleischmann, Lempken, Tiep, 1997): r'-semiregular pairs.

Some connections

- The affine groups with property (*) have been studied extensively.
- (Guralnick, Wan, 1992): Structure of Galois field extension
- (Fleischmann, Lempken, Tiep, 1997): r'-semiregular pairs.

Definition

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive group. Set

$$
m=\max \left\{\left|\Gamma^{x} \backslash \Gamma\right|: \Gamma \subseteq \Omega, x \in G\right\} .
$$

We say that G has movement m.

Some connections

- The affine groups with property $\left(^{*}\right)$ have been studied extensively.
- (Guralnick, Wan, 1992): Structure of Galois field extension
- (Fleischmann, Lempken, Tiep, 1997): r'-semiregular pairs.

Definition

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive group. Set

$$
m=\max \left\{\left|\Gamma^{x} \backslash \Gamma\right|: \Gamma \subseteq \Omega, x \in G\right\}
$$

We say that G has movement m.

$$
\begin{aligned}
& \text { Theorem (Hassani, Khayaty, Khukhro, Praeger, 1999) } \\
& \text { If } G \text { is not a 2-group and } n=\lfloor 2 m p /(p-1)\rfloor \text {, where } p \geq 5 \text { is the least odd } \\
& \text { prime dividing }|G| \text {, then } p \mid n \text { and every derangement in } G \text { has order } p \text {. }
\end{aligned}
$$

Some connections

- The affine groups with property (*) have been studied extensively.
- (Guralnick, Wan, 1992): Structure of Galois field extension
- (Fleischmann, Lempken, Tiep, 1997): r'-semiregular pairs.

Definition

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive group. Set

$$
m=\max \left\{\left|\Gamma^{x} \backslash \Gamma\right|: \Gamma \subseteq \Omega, x \in G\right\} .
$$

We say that G has movement m.

Theorem (Hassani, Khayaty, Khukhro, Praeger, 1999)

If G is not a 2-group and $n=\lfloor 2 m p /(p-1)\rfloor$, where $p \geq 5$ is the least odd prime dividing $|G|$, then $p \mid n$ and every derangement in G has order p.

Derangements in p-groups

Problem (Mann-Praeger, 1996)

If $G \leq \operatorname{Sym}(\Omega)$ is a transitive p-group for some prime p, then every derangement of G has order p if and only if G has exponent p.

- (Mann-Praeger, 1996): This is true if $p=2,3$.

Derangements in p-groups

Problem (Mann-Praeger, 1996)

If $G \leq \operatorname{Sym}(\Omega)$ is a transitive p-group for some prime p, then every derangement of G has order p if and only if G has exponent p.

- (Mann-Praeger, 1996): This is true if $p=2,3$.

```
Conjecture
Let G=HV\leqAGL(V) be a finite affine primitive group with point
stabilizer H}=\mp@subsup{G}{0}{}\mathrm{ and socle V =(剣)}\mp@subsup{)}{}{k}\mathrm{ , where p is a prime and
k\geq1.
```


Derangements in p-groups

Problem (Mann-Praeger, 1996)

If $G \leq \operatorname{Sym}(\Omega)$ is a transitive p-group for some prime p, then every derangement of G has order p if and only if G has exponent p.

- (Mann-Praeger, 1996): This is true if $p=2,3$.

Conjecture

Let $G=H V \leq \operatorname{AGL}(V)$ be a finite affine primitive group with point stabilizer $H=G_{0}$ and socle $V=\left(\mathbb{Z}_{p}\right)^{k}$, where p is a prime and $k \geq 1$. Then G has property $\left({ }^{*}\right)$ iff $r=p$ and the following two conditions hold:

Derangements in p-groups

Problem (Mann-Praeger, 1996)

If $G \leq \operatorname{Sym}(\Omega)$ is a transitive p-group for some prime p, then every derangement of G has order p if and only if G has exponent p.

- (Mann-Praeger, 1996): This is true if $p=2,3$.

Conjecture

Let $G=H V \leq \operatorname{AGL}(V)$ be a finite affine primitive group with point stabilizer $H=G_{0}$ and socle $V=\left(\mathbb{Z}_{p}\right)^{k}$, where p is a prime and $k \geq 1$. Then G has property $\left({ }^{*}\right)$ iff $r=p$ and the following two conditions hold:
(i) Every two-point stabilizer in G is an r-group;

Derangements in p-groups

Problem (Mann-Praeger, 1996)

If $G \leq \operatorname{Sym}(\Omega)$ is a transitive p-group for some prime p, then every derangement of G has order p if and only if G has exponent p.

- (Mann-Praeger, 1996): This is true if $p=2,3$.

Conjecture

Let $G=H V \leq \operatorname{AGL}(V)$ be a finite affine primitive group with point stabilizer $H=G_{0}$ and socle $V=\left(\mathbb{Z}_{p}\right)^{k}$, where p is a prime and $k \geq 1$. Then G has property $\left({ }^{*}\right)$ iff $r=p$ and the following two conditions hold:
(i) Every two-point stabilizer in G is an r-group;
(ii) A Sylow r-subgroup of G has exponent r.

Derangements in p-groups

Problem (Mann-Praeger, 1996)

If $G \leq \operatorname{Sym}(\Omega)$ is a transitive p-group for some prime p, then every derangement of G has order p if and only if G has exponent p.

- (Mann-Praeger, 1996): This is true if $p=2,3$.

Conjecture

Let $G=H V \leq \operatorname{AGL}(V)$ be a finite affine primitive group with point stabilizer $H=G_{0}$ and socle $V=\left(\mathbb{Z}_{p}\right)^{k}$, where p is a prime and $k \geq 1$. Then G has property $\left({ }^{*}\right)$ iff $r=p$ and the following two conditions hold:
(i) Every two-point stabilizer in G is an r-group;
(ii) A Sylow r-subgroup of G has exponent r.

Some open problems

- Marušič's conjecture on vertex-transitive graphs (and more general, the polycirculant conjecture).
- Isbell's conjecture: There is a function f_{p} such that if $n=p^{a} b$ with $\operatorname{gcd}(b, p)=1$ and $a>f_{p}(b)$, then any transitive group of degree n contains a derangement of p-power order.
- (J.G. Thompson) If G is primitive group, then $\Delta(G)$ is a transitive subset of G. (There is a reduction to almost simple groups).

