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Introduction and Notation

Introduction and Notation

Let Ω be a finite set of size n > 1

Sym(Ω) : the group of all permutations on Ω.

Let G ≤ Sym(Ω) be a permutation group on Ω.

Gα = {g ∈ G : αg = α} : the point stabilizer in G of α ∈ Ω.

xG = {xg : g ∈ G} : a conjugacy class of G containing x ∈ G .

If H ≤ G and g ∈ G , then Hg := g−1Hg .

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 3 / 31



1

Introduction and Notation

Introduction and Notation

Let Ω be a finite set of size n > 1

Sym(Ω) : the group of all permutations on Ω.

Let G ≤ Sym(Ω) be a permutation group on Ω.

Gα = {g ∈ G : αg = α} : the point stabilizer in G of α ∈ Ω.

xG = {xg : g ∈ G} : a conjugacy class of G containing x ∈ G .

If H ≤ G and g ∈ G , then Hg := g−1Hg .

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 3 / 31



1

Introduction and Notation

Introduction and Notation

Let Ω be a finite set of size n > 1

Sym(Ω) : the group of all permutations on Ω.

Let G ≤ Sym(Ω) be a permutation group on Ω.

Gα = {g ∈ G : αg = α} : the point stabilizer in G of α ∈ Ω.

xG = {xg : g ∈ G} : a conjugacy class of G containing x ∈ G .

If H ≤ G and g ∈ G , then Hg := g−1Hg .

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 3 / 31



1

Introduction and Notation

Introduction and Notation

Let Ω be a finite set of size n > 1

Sym(Ω) : the group of all permutations on Ω.

Let G ≤ Sym(Ω) be a permutation group on Ω.

Gα = {g ∈ G : αg = α} : the point stabilizer in G of α ∈ Ω.

xG = {xg : g ∈ G} : a conjugacy class of G containing x ∈ G .

If H ≤ G and g ∈ G , then Hg := g−1Hg .

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 3 / 31



1

Introduction and Notation

Introduction and Notation

Let Ω be a finite set of size n > 1

Sym(Ω) : the group of all permutations on Ω.

Let G ≤ Sym(Ω) be a permutation group on Ω.

Gα = {g ∈ G : αg = α} : the point stabilizer in G of α ∈ Ω.

xG = {xg : g ∈ G} : a conjugacy class of G containing x ∈ G .

If H ≤ G and g ∈ G , then Hg := g−1Hg .

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 3 / 31



1

Introduction and Notation

Introduction and Notation

Let Ω be a finite set of size n > 1

Sym(Ω) : the group of all permutations on Ω.

Let G ≤ Sym(Ω) be a permutation group on Ω.

Gα = {g ∈ G : αg = α} : the point stabilizer in G of α ∈ Ω.

xG = {xg : g ∈ G} : a conjugacy class of G containing x ∈ G .

If H ≤ G and g ∈ G , then Hg := g−1Hg .

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 3 / 31



1

Introduction and Notation

Introduction and Notation, cont.

Definition

Let G ≤ Sym(Ω) be a permutation group on a finite set Ω.

An element x ∈ G is a derangement if it has no fixed point on Ω.

Let ∆(G ) be the set of all derangements in G .

We call d(G ) =
|∆(G )|
|G |

the proportion of derangements in G .
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Introduction and Notation

Introduction and Notation, cont.

Example

Let Ω = {1, 2, · · · , 5} and G = Sym(Ω). Then

x = (1, 2, 3, 4, 5) and y = (1, 2)(3, 4, 5) are derangements in G .

∆(G ) = xG ∪ yG .

|xG | = 4! = 24 and |yG | = 20.

|∆(G )| = 24 + 20 = 44.

d(G ) =
|∆(G )|
|G |

=
44

120
=

11

30
.
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Introduction and Notation

Introduction and Notation, cont.

Lemma

Let G ≤ Sym(Ω) be a transitive permutation group with |Ω| > 1 and let
H be a point stabilizer. Then

∆(G ) = G \
⋃
α∈Ω

Gα = G \
⋃
g∈G

Hg .

In particular, x ∈ ∆(G ) if and only if xG ∩ H = ∅.
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Introduction and Notation

Montmort’s theorem

Let G ≤ Sym(Ω) be a finite transitive permutation group with
|Ω| = n.

Question: What is the probability that a random chosen permutation
in the symmetric group Sn is a derangement?

Theorem (Montmort, 1708)

d(Sn) =
n∑

k=0

(−1)k

k!
.

In particular, d(Sn) −→ 1
e as n −→∞.
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Introduction and Notation

Montmort’s theorem - proof

The number of permutations of Ω = {1, 2, · · · , n} fixing a given set of k
points is (n − k)!.

By the Inclusion-Exclusion principle, we have

|∆(Sn)| =
∑n

k=0(−1)k
(
n
k

)
(n − k)!

=
∑n

k=0(−1)k
n!

k!(n − k)!
(n − k)!

= n!
∑n

k=0

(−1)k

k!
.

Observation: The proportion d(Sn) =
∑n

k=0

(−1)k

k!
is the truncation of

the Taylor series for ex at x = −1.
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Introduction and Notation

Montmort’s theorem - Applications

Card shuffling

Suppose you have a deck of n cards, numbered 1, 2, · · · , n. After shuffling,
draw one card at a time without replacement, counting out loud as each
card is drawn: ‘1, 2, 3, · · · ’.
Question: What is the probability that there will be no coincidence?

This game is also called ‘Treize’, ‘Rencontres’ or ‘Montmort’s matching
problem’.

Secretary problem

If a secretary types n letters and addresses the envelopes, then puts the
letters in envelopes at random.
Question: What is the probability that nobody gets their correct letter?
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Existence

Jordan’s theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree n ≥ 2 contains a
derangement.

The proof of Jordan’s theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside’s Lemma)

Let G ≤ Sym(Ω) be a finite permutation group. Then the number of
orbits of G on Ω is the average number of fixed points of elements of G .

Let F ix(x) = F ixΩ(x) = {α ∈ Ω : αx = α}.

Let m be the number of G -orbits on Ω. Then

m =
1

|G |
∑
g∈G
|F ixΩ(g)|.
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1

Existence

A proof of Orbit-Counting Lemma

Consider the bipartite graph Γ with vertex set Ω ∪ G and there is an
edge between α ∈ Ω, g ∈ G iff αg = α.

Count the number of edges of Γ in two different ways.

Let ∆ be a G -orbit on Ω and α ∈ ∆.

The number of edges going through α is |Gα| =
|G |
|∆|

.

So ∆ has |G | edges and Γ has m|G | edges.

For g ∈ G , there are exactly |F ixΩ(g)| edges.

So Γ has
∑

g∈G |F ixΩ(g)| edges.

Therefore,
∑

g∈G |F ixΩ(g)| = m|G |.
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1

Existence

Jordan’s theorem-Variations

Let G ≤ Sym(Ω) be a finite transitive permutation group.

By Jordan’s theorem, G always contains a derangement.

Questions

What is the proportion of derangements in G?

Does G contain derangements with special properties?

What is the structure of G if we impose some restrictions on ∆(G )?

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 12 / 31



1

Existence

Jordan’s theorem-Variations

Let G ≤ Sym(Ω) be a finite transitive permutation group.

By Jordan’s theorem, G always contains a derangement.

Questions

What is the proportion of derangements in G?

Does G contain derangements with special properties?

What is the structure of G if we impose some restrictions on ∆(G )?

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 12 / 31



1

Existence

Jordan’s theorem-Variations

Let G ≤ Sym(Ω) be a finite transitive permutation group.

By Jordan’s theorem, G always contains a derangement.

Questions

What is the proportion of derangements in G?

Does G contain derangements with special properties?

What is the structure of G if we impose some restrictions on ∆(G )?

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 12 / 31



1

Existence

Jordan’s theorem-Variations

Let G ≤ Sym(Ω) be a finite transitive permutation group.

By Jordan’s theorem, G always contains a derangement.

Questions

What is the proportion of derangements in G?

Does G contain derangements with special properties?

What is the structure of G if we impose some restrictions on ∆(G )?

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 12 / 31



1

Existence

Jordan’s theorem-Variations

Let G ≤ Sym(Ω) be a finite transitive permutation group.

By Jordan’s theorem, G always contains a derangement.

Questions

What is the proportion of derangements in G?

Does G contain derangements with special properties?

What is the structure of G if we impose some restrictions on ∆(G )?

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 12 / 31



1

Primitive groups

Primitivity

Let G ≤ Sym(Ω) be a transitive permutation group with point
stabilizer H.

A nonempty subset ∆ ⊆ Ω is a block of G if ∆g = ∆ or ∆g ∩∆ = ∅
for all g ∈ G .

Ω and {α} for α ∈ Ω are trivial blocks of G .

If G = D8 ≤ Sym(Ω) is the group of symmetries of a square with
vertex set Ω = {1, 2, 3, 4}, then {1, 3} is a nontrivial block of G .

Definition

A transitive group G ≤ Sym(Ω) is imprimitive if G has a nontrivial block.
Otherwise, G is primitive.

Equivalently, G is primitive if and only if the point stabilizer Gα is a
maximal subgroup of G .
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1

Primitive groups

Almost simple and Affine groups

Definition

A transitive group G ≤ Sym(Ω) is almost simple if there exists a
nonabelian simple group T such that T E G ≤ Aut(T ).

G is primitive if and only if Gα is maximal in G .

Definition

Let p be a prime and let V = Zd
p . Let AGL(V ) = V oGL(V ) be the

group of affine transformations of V :

τx ,u(v) = vx + u ( for x ∈ GL(V ), u ∈ V ).

G ≤ Sym(V ) is affine if V E G ≤ AGL(V ).

G is primitive if and only if G0 ≤ GL(V ) is irreducible.
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1

Primitive groups

O’Nan-Scott-Aschbacher Theorem

Theorem

Let G ≤ Sym(Ω) be a finite primitive permutation group. Then one of the
following holds:

1 G is almost simple.

2 G is of affine type.

3 G is of diagonal type.

4 G is of product type.

5 G is of twisted wreath product type.
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1

Proportions of derangements

Bounding d(G ) in terms of the degree

Let G ≤ Sym(Ω) be a finite transitive group with n = |Ω| ≥ 2.

We have d(G ) > 0 by Jordan’s theorem.

Theorem (Cameron-Cohen, 1992)

d(G ) ≥ 1
n with equality if and only if G is sharply 2-transitive.

G is 2-transitive if the natural action of G on
Γ = {(α, β) : α 6= β ∈ Ω} is transitive.

It is sharply 2-transitive if furthermore, G(α,β) = 1 for some
(α, β) ∈ Γ.

This bound is best possible but we can get better bounds by allowing
more exceptions.
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1

Proportions of derangements

Bounding d(G ) in terms of the degree

Let G ≤ Sym(Ω) be a finite transitive group with n = |Ω| ≥ 2.

Theorem (Guralnick-Wan, 1997)

One of the following holds.

d(G ) ≥ 2/n.

G is sharply 2-transitive.

(G , n, d(G )) = (S5, 5, 11/30) or (S4, 4, 3/8).

The proof uses the classification of 2-transitive groups.

This result has applications to algebraic curves over finite fields.
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1

Proportions of derangements

Bounding d(G ) in terms of the rank

Let G ≤ Sym(Ω) be a transitive permutation group with n = |Ω| ≥ 2.

The rank of G is the number of orbits of G on Ω× Ω.

Theorem (Guralnick-Isaacs-Spiga, 2015)

d(G ) ≤ 1− 1
r with equality if and only if G acts regularly.

Let π be the permutation character of G .

Observe that (π, π) = r and π(g) = 0 for all g ∈ ∆(G ). We have

r |G | =
∑
g∈G

π(g)2 =
∑

g∈G\∆(G)

π(g)2 ≥ 1

|G | − |∆(G )|
(
∑

g∈G\∆(G)

π(g))2.

As (π, 1G ) = 1 we have |G | =
∑

g∈G π(g) =
∑

g∈G\∆(G) π(g).

So r |G | ≥ |G |2
|G |−|∆(G)| and the first part holds.
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Observe that (π, π) = r and π(g) = 0 for all g ∈ ∆(G ). We have

r |G | =
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g∈G

π(g)2 =
∑

g∈G\∆(G)

π(g)2 ≥ 1

|G | − |∆(G )|
(
∑

g∈G\∆(G)

π(g))2.

As (π, 1G ) = 1 we have |G | =
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g∈G π(g) =
∑

g∈G\∆(G) π(g).
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1

Proportions of derangements

Simple groups

Montmort’s theorem: d(Sn) ≥ 1
e .

Question: what is the asymptotic behavior of d(G ) for other infinite
families of groups?

d(An) ≥ 1
3 and d(PSL2(q)) ≥ 1

3 for all n, q ≥ 5.

Theorem (Fulman-Guralnick, 2014)

There exists an absolute constant ε > 0 so that d(G ) > ε for all simple
transitive group G .

The absolute constant ε is unknown.

This confirms a conjecture due to Boston et al. (1993) and Shalev.
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1

Derangements with special properties

Derangements of prime power order

Question: Does G contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

Let G be a counterexample with |G | minimal.

We can assume that G is primitive.

Let 1 6= N E G . Then N is transitive. So by the minimality of |G |, we
can assume N = G . Thus G is a simple group.

Question: Find a proof of FKS-theorem without using the classification.

Theorem

Let L/K be a finite extension of global fields with L 6= K . Then the
relative Brauer group B(L/K ) is infinite.
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1

Derangements with special properties

Elusive groups

Question: Does transitive group contain derangements of prime order?

Let G = M11,H = PSL2(11) and Ω = G/H.

Then every element in ∆(G ) has order 4 or 8.

A transitive group is elusive if it has no derangement of prime order.

Theorem (Giudici, 2003)

Let G ≤ Sym(Ω) be a finite primitive elusive group. Then G = M11 o L
acting with its product action on Ω = Γk , where k ≥ 1, L ≤ Sk is transitive
and |Γ| = 12.

Conjecture (Marušič, 1981)

Every finite vertex-transitive digraph contains a derangement of prime
order.
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Every finite vertex-transitive digraph contains a derangement of prime
order.

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 21 / 31



1

Derangements with special properties

Elusive groups

Question: Does transitive group contain derangements of prime order?

Let G = M11,H = PSL2(11) and Ω = G/H.

Then every element in ∆(G ) has order 4 or 8.

A transitive group is elusive if it has no derangement of prime order.

Theorem (Giudici, 2003)

Let G ≤ Sym(Ω) be a finite primitive elusive group. Then G = M11 o L
acting with its product action on Ω = Γk , where k ≥ 1, L ≤ Sk is transitive
and |Γ| = 12.

Conjecture (Marušič, 1981)
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Every finite vertex-transitive digraph contains a derangement of prime
order.

HP. Tong-Viet (UP) Derangements in primitive groups July 28, 2015 21 / 31



1

Groups with restriction on derangements

Conjugacy classes

Let G ≤ Sym(Ω) be a finite transitive group with point stabilizer H.

Let κ(G ) be the number of conjugacy classes in ∆(G ).

(Jordan’s theorem) κ(G ) ≥ 1.

Theorem (Burness &T-V, 2014)

Let G be a finite primitive group of degree n. Then κ(G ) = 1 if and only if

G is sharply 2-transitive or

(G , n) = (A5, 6) or (Aut(PSL2(8)), 28).

‘Primitivity’ was replaced by ‘transitivity’ by (Guralnick, 2015).

For almost simple groups G , we have κ(G )→∞ when |G | → ∞.
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1

Groups with restriction on derangements

Proof

Theorem (Reduction)

Let G ≤ Sym(Ω) be a finite primitive group. Then κ(G ) = 1 if and only if
G is almost simple or G is sharply 2-transitive.

Suppose ∆(G ) = xG .

Let N E G and H = Gα. Then N is transitive and G = HN.

Case N is regular: H ∩ N = 1 and N = {1} ∪ xG .

If N is nonabelian, then |N| is divisible by at least 3 primes. Thus N
is abelain and so N ≤ CG (x).

|∆(G )| = |G : CG (x)| ≤ |G : N| = |H| = |G |/n. Thus d(G ) ≤ 1
n .

However, Cameron-Cohen implies that d(G ) ≥ 1
n with equality iff G

is sharply 2-transitive.

Case N is not regular: G is almost simple.
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1

Groups with restriction on derangements

Proof - Almost simple groups

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

one of the 26 sporadic simple groups;

an alternating group An wih n ≥ 5;

a finite simple group of Lie type.

Use GAP or ATLAS for sporadic simple groups.

(Jordan’s theorem) If G is a primitive group of degree n containing a
cycle of prime length fixing at least 3 points, then An ≤ G .

For groups of Lie type G with simple socle T , choose two distinct
conjugacy classes xG1 and xG2 , where xi ∈ T such that both x ′i s lie in
a small number of maximal subgroups of G .
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1

Groups with restriction on derangements

Zeros of characters

Let G be a finite group and let Irr(G ) be the set of complex
irreducible characters of G .

Let χ ∈ Irr(G ) with χ(1) > 1.

(Burnside’s theorem, 1911): χ(g) = 0 for some g ∈ G .

(Malle, Navarro, Olsson, 2000): χ(g) = 0 for some g ∈ G of prime
power order.

Let n(χ) be the number of G -classes on which G vanishes.

Problem

Classify all the pairs (G , χ) with n(χ) = 1 for some nonlinear χ ∈ Irr(G ).
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1

Groups with restriction on derangements

Zeros of characters

If χ is imprimitive, i.e., χ = θG for some θ ∈ Irr(H) with H < G ,
then n(χ) = 1 implies that G \ ∪g∈GHg = xG for some g ∈ G .

If H is core-free, then our theorem applies.

In general, we obtain some restriction on the normal structure of G .

Remarks

If G ≤ Sym(Ω) is primitive and κ(G ) = 2, then G is either almost
simple or affine.

If ∆(G ) = xG , then every element in ∆(G ) has the same order which
is a power of some prime.
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1

Groups with restriction on derangements

Derangements of prime power order

Let G ≤ Sym(Ω) be a finite transitive group.

(Fein, Kantor, Schacher, 1981): G has a derangement of prime power
order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

G is an elementary abelian 2-group; or

G is a Frobenius group with an elementary abelian 2-group kernel.

Problem 1: Classify transitive groups in which all derangements have
prime order p > 2.

Problem 2: Classify transitive groups whose all derangements are
r -elements for some fixed prime r .
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1

Groups with restriction on derangements

Prime power order

Let G ≤ Sym(Ω) be a finite primitive group with point stabilizer H.

Property (*): Every derangement in G is an r -element for some fixed
prime r .

Theorem (Burness & TV, 2014)

If (*) holds, then G is either almost simple or affine.

The almost simple groups satisfying (*) are completely classified. We
have Soc(G ) = PSL2(q),PSL3(q) for some prime power q or
(G ,H) = (M11,PSL2(11)).

If G ≤ AGL(V) is affine with V = Zd
p , then (*) holds iff r = p and

every two point stabilizer in G is an r -group.
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1

Groups with restriction on derangements

Some connections

The affine groups with property (*) have been studied extensively.

(Guralnick, Wan, 1992): Structure of Galois field extension

(Fleischmann, Lempken, Tiep, 1997): r ′-semiregular pairs.

Definition

Let G ≤ Sym(Ω) be a transitive group. Set

m = max{|Γx \ Γ| : Γ ⊆ Ω, x ∈ G}.

We say that G has movement m.

Theorem (Hassani, Khayaty, Khukhro, Praeger, 1999)

If G is not a 2-group and n = b2mp/(p− 1)c, where p ≥ 5 is the least odd
prime dividing |G |, then p | n and every derangement in G has order p.
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Groups with restriction on derangements

Some connections

The affine groups with property (*) have been studied extensively.

(Guralnick, Wan, 1992): Structure of Galois field extension

(Fleischmann, Lempken, Tiep, 1997): r ′-semiregular pairs.
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Groups with restriction on derangements

Derangements in p-groups

Problem (Mann-Praeger, 1996)

If G ≤ Sym(Ω) is a transitive p-group for some prime p, then every
derangement of G has order p if and only if G has exponent p.

(Mann-Praeger, 1996): This is true if p = 2, 3.

Conjecture

Let G = HV ≤ AGL(V ) be a finite affine primitive group with point
stabilizer H = G0 and socle V = (Zp)k , where p is a prime and
k ≥ 1.Then G has property (*) iff r = p and the following two conditions
hold:

(i) Every two-point stabilizer in G is an r -group;

(ii) A Sylow r -subgroup of G has exponent r .
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Some open problems

Some open problems

Marušič’s conjecture on vertex-transitive graphs (and more general,
the polycirculant conjecture).

Isbell’s conjecture: There is a function fp such that if n = pab with
gcd(b, p) = 1 and a > fp(b), then any transitive group of degree n
contains a derangement of p-power order.

(J.G. Thompson) If G is primitive group, then ∆(G ) is a transitive
subset of G . (There is a reduction to almost simple groups).
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