Derangements in primitive permutation groups and applications

Hung P. Tong-Viet

University of Pretoria Hung.Tong-Viet@up.ac.za

2015 CIMPA Research School on Algebraic Lie Theory AIMS July 28, 2015 (Joint work with Tim Burness)

HP. Tong-Viet (UP)

Table of contents

Existence

- 3 Primitive groups
- Proportions of derangements
- 5 Derangements with special properties
- 6 Groups with restriction on derangements

Some open problems

• Let Ω be a finite set of size n > 1

• $Sym(\Omega)$: the group of all permutations on Ω .

- Let Ω be a finite set of size n > 1
- $\operatorname{Sym}(\Omega)$: the group of all permutations on Ω .
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω .

- Let Ω be a finite set of size n > 1
- $\operatorname{Sym}(\Omega)$: the group of all permutations on Ω .
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω .
- $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}$: the point stabilizer in G of $\alpha \in \Omega$.

- Let Ω be a finite set of size n > 1
- $Sym(\Omega)$: the group of all permutations on Ω .
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω .
- $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}$: the point stabilizer in G of $\alpha \in \Omega$.
- $x^G = \{x^g : g \in G\}$: a conjugacy class of G containing $x \in G$.

- Let Ω be a finite set of size n > 1
- $Sym(\Omega)$: the group of all permutations on Ω .
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω .
- $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}$: the point stabilizer in G of $\alpha \in \Omega$.
- $x^{G} = \{x^{g} : g \in G\}$: a conjugacy class of G containing $x \in G$.
- If $H \leq G$ and $g \in G$, then $H^g := g^{-1}Hg$.

- Let Ω be a finite set of size n > 1
- $Sym(\Omega)$: the group of all permutations on Ω .
- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on Ω .
- $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}$: the point stabilizer in G of $\alpha \in \Omega$.
- $x^{G} = \{x^{g} : g \in G\}$: a conjugacy class of G containing $x \in G$.
- If $H \leq G$ and $g \in G$, then $H^g := g^{-1}Hg$.

Introduction and Notation, cont.

Definition

- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on a finite set Ω .
- An element $x \in G$ is a derangement if it has no fixed point on Ω .

Introduction and Notation, cont.

Definition

- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on a finite set Ω .
- An element $x \in G$ is a derangement if it has no fixed point on Ω .
- Let $\Delta(G)$ be the set of all derangements in G.

Introduction and Notation, cont.

Definition

- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on a finite set Ω .
- An element $x \in G$ is a derangement if it has no fixed point on Ω .
- Let $\Delta(G)$ be the set of all derangements in G.

• We call $d(G) = \frac{|\Delta(G)|}{|G|}$ the proportion of derangements in G.

Introduction and Notation, cont.

Definition

- Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group on a finite set Ω .
- An element $x \in G$ is a derangement if it has no fixed point on Ω .
- Let $\Delta(G)$ be the set of all derangements in G.

• We call $d(G) = \frac{|\Delta(G)|}{|G|}$ the proportion of derangements in G.

Introduction and Notation, cont.

Example

Let $\Omega = \{1, 2, \cdots, 5\}$ and $G = \operatorname{Sym}(\Omega)$. Then

• x = (1, 2, 3, 4, 5) and y = (1, 2)(3, 4, 5) are derangements in G.

Introduction and Notation, cont.

Example

- Let $\Omega = \{1, 2, \cdots, 5\}$ and $G = \operatorname{Sym}(\Omega)$. Then
 - x = (1, 2, 3, 4, 5) and y = (1, 2)(3, 4, 5) are derangements in G.
 - $\Delta(G) = x^G \cup y^G$.

Introduction and Notation, cont.

Example

Let $\Omega = \{1, 2, \cdots, 5\}$ and $G = \operatorname{Sym}(\Omega)$. Then

•
$$x = (1, 2, 3, 4, 5)$$
 and $y = (1, 2)(3, 4, 5)$ are derangements in G.

•
$$\Delta(G) = x^G \cup y^G$$
.

•
$$|x^G| = 4! = 24$$
 and $|y^G| = 20$.

Introduction and Notation, cont.

Example

Let $\Omega = \{1, 2, \cdots, 5\}$ and $G = \operatorname{Sym}(\Omega)$. Then

•
$$x = (1, 2, 3, 4, 5)$$
 and $y = (1, 2)(3, 4, 5)$ are derangements in G.

•
$$\Delta(G) = x^G \cup y^G$$
.

•
$$|x^{G}| = 4! = 24$$
 and $|y^{G}| = 20$

• $|\Delta(G)| = 24 + 20 = 44.$

Introduction and Notation, cont.

Example

Let $\Omega = \{1, 2, \cdots, 5\}$ and $G = \operatorname{Sym}(\Omega)$. Then

•
$$x = (1, 2, 3, 4, 5)$$
 and $y = (1, 2)(3, 4, 5)$ are derangements in G.

•
$$\Delta(G) = x^G \cup y^G$$
.

•
$$|x^G| = 4! = 24$$
 and $|y^G| = 20$.

•
$$|\Delta(G)| = 24 + 20 = 44.$$

•
$$d(G) = \frac{|\Delta(G)|}{|G|} = \frac{44}{120} = \frac{11}{30}.$$

Introduction and Notation, cont.

Example

Let $\Omega = \{1, 2, \cdots, 5\}$ and $G = \operatorname{Sym}(\Omega)$. Then

•
$$x = (1, 2, 3, 4, 5)$$
 and $y = (1, 2)(3, 4, 5)$ are derangements in G.

•
$$\Delta(G) = x^G \cup y^G$$
.

•
$$|x^G| = 4! = 24$$
 and $|y^G| = 20$.

•
$$|\Delta(G)| = 24 + 20 = 44.$$

•
$$d(G) = \frac{|\Delta(G)|}{|G|} = \frac{44}{120} = \frac{11}{30}.$$

Introduction and Notation, cont.

Lemma

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with $|\Omega| > 1$ and let H be a point stabilizer. Then

$$\Delta(G) = G \setminus \bigcup_{\alpha \in \Omega} G_{\alpha} = G \setminus \bigcup_{g \in G} H^g.$$

Introduction and Notation, cont.

Lemma

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with $|\Omega| > 1$ and let H be a point stabilizer. Then

$$\Delta(G)=G\setminus igcup_{lpha\in\Omega}G_{lpha}=G\setminus igcup_{g\in G}H^g.$$

In particular, $x \in \Delta(G)$ if and only if $x^G \cap H = \emptyset$.

Introduction and Notation, cont.

Lemma

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with $|\Omega| > 1$ and let H be a point stabilizer. Then

$$\Delta(G)=G\setminus igcup_{lpha\in\Omega}G_{lpha}=G\setminus igcup_{g\in G}H^g.$$

In particular, $x \in \Delta(G)$ if and only if $x^G \cap H = \emptyset$.

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group with $|\Omega| = n$.
- Question: What is the probability that a random chosen permutation in the symmetric group S_n is a derangement?

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive permutation group with $|\Omega| = n$.
- Question: What is the probability that a random chosen permutation in the symmetric group S_n is a derangement?

Theorem (Montmort, 1708)

$$d(\mathbf{S}_n) = \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive permutation group with $|\Omega| = n$.
- Question: What is the probability that a random chosen permutation in the symmetric group S_n is a derangement?

Theorem (Montmort, 1708)

$$d(\mathbf{S}_n) = \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

In particular, $d(S_n) \longrightarrow \frac{1}{e}$ as $n \longrightarrow \infty$.

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive permutation group with $|\Omega| = n$.
- Question: What is the probability that a random chosen permutation in the symmetric group S_n is a derangement?

Theorem (Montmort, 1708)

$$d(\mathbf{S}_n) = \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

In particular, $d(S_n) \longrightarrow \frac{1}{e}$ as $n \longrightarrow \infty$.

The number of permutations of $\Omega = \{1, 2, \dots, n\}$ fixing a given set of k points is (n - k)!.

By the Inclusion-Exclusion principle, we have

$$|\Delta(\mathbf{S}_n)| = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)!$$

The number of permutations of $\Omega = \{1, 2, \dots, n\}$ fixing a given set of k points is (n - k)!.

By the Inclusion-Exclusion principle, we have

$$\Delta(\mathbf{S}_n)| = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)!$$

$$= \sum_{k=0}^{n} (-1)^{k} \frac{n!}{k!(n-k)!} (n-k)!$$

The number of permutations of $\Omega = \{1, 2, \dots, n\}$ fixing a given set of k points is (n - k)!.

By the Inclusion-Exclusion principle, we have

$$\Delta(\mathbf{S}_n)| = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)!$$

$$= \sum_{k=0}^{n} (-1)^{k} \frac{n!}{k!(n-k)!} (n-k)!$$

$$= n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

The number of permutations of $\Omega = \{1, 2, \dots, n\}$ fixing a given set of k points is (n - k)!.

By the Inclusion-Exclusion principle, we have

$$|\Delta(\mathbf{S}_n)| = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)!$$

$$= \sum_{k=0}^{n} (-1)^{k} \frac{n!}{k!(n-k)!} (n-k)!$$

$$= n! \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}.$$

Observation: The proportion $d(S_n) = \sum_{k=0}^n \frac{(-1)^k}{k!}$ is the truncation of the Taylor series for e^x at x = -1.

The number of permutations of $\Omega = \{1, 2, \dots, n\}$ fixing a given set of k points is (n - k)!.

By the Inclusion-Exclusion principle, we have

$$|\Delta(\mathbf{S}_n)| = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)!$$

$$= \sum_{k=0}^{n} (-1)^{k} \frac{n!}{k!(n-k)!} (n-k)!$$

$$= n! \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}.$$

Observation: The proportion $d(S_n) = \sum_{k=0}^n \frac{(-1)^k}{k!}$ is the truncation of the Taylor series for e^x at x = -1.

Card shuffling

Suppose you have a deck of *n* cards, numbered $1, 2, \dots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: '1, 2, 3, ...'. **Question**: What is the probability that there will be no coincidence?

Card shuffling

Suppose you have a deck of *n* cards, numbered $1, 2, \dots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: '1, 2, 3, ...'. **Question**: What is the probability that there will be no coincidence?

This game is also called 'Treize', 'Rencontres' or 'Montmort's matching problem'.

Card shuffling

Suppose you have a deck of *n* cards, numbered $1, 2, \dots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: '1, 2, 3, ...'. **Question**: What is the probability that there will be no coincidence?

This game is also called 'Treize', 'Rencontres' or 'Montmort's matching problem'.

Secretary problem

If a secretary types n letters and addresses the envelopes, then puts the letters in envelopes at random.

Card shuffling

Suppose you have a deck of *n* cards, numbered $1, 2, \dots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: '1, 2, 3, ...'. **Question**: What is the probability that there will be no coincidence?

This game is also called 'Treize', 'Rencontres' or 'Montmort's matching problem'.

Secretary problem

If a secretary types n letters and addresses the envelopes, then puts the letters in envelopes at random.

Question: What is the probability that nobody gets their correct letter?

Card shuffling

Suppose you have a deck of *n* cards, numbered $1, 2, \dots, n$. After shuffling, draw one card at a time without replacement, counting out loud as each card is drawn: '1, 2, 3, ...'. **Question**: What is the probability that there will be no coincidence?

This game is also called 'Treize', 'Rencontres' or 'Montmort's matching problem'.

Secretary problem

If a secretary types n letters and addresses the envelopes, then puts the letters in envelopes at random. **Question**: What is the probability that nobody gets their correct letter?

Existence

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \ge 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:
Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \ge 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside's Lemma)

Let $G \leq \text{Sym}(\Omega)$ be a finite permutation group. Then the number of orbits of G on Ω is the average number of fixed points of elements of G.

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \ge 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside's Lemma)

Let $G \leq \text{Sym}(\Omega)$ be a finite permutation group. Then the number of orbits of G on Ω is the average number of fixed points of elements of G.

Let $\mathcal{F}ix(x) = \mathcal{F}ix_{\Omega}(x) = \{ \alpha \in \Omega : \alpha^{\times} = \alpha \}.$

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \ge 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside's Lemma)

Let $G \leq \text{Sym}(\Omega)$ be a finite permutation group. Then the number of orbits of G on Ω is the average number of fixed points of elements of G.

Let
$$\mathcal{F}ix(x) = \mathcal{F}ix_{\Omega}(x) = \{ \alpha \in \Omega : \alpha^{x} = \alpha \}.$$

Let *m* be the number of *G*-orbits on Ω . Then

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \ge 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside's Lemma)

Let $G \leq \text{Sym}(\Omega)$ be a finite permutation group. Then the number of orbits of G on Ω is the average number of fixed points of elements of G.

Let
$$\mathcal{F}ix(x) = \mathcal{F}ix_{\Omega}(x) = \{ \alpha \in \Omega : \alpha^{x} = \alpha \}.$$

Let *m* be the number of *G*-orbits on Ω . Then

$$m = \frac{1}{|G|} \sum_{g \in G} |\mathcal{F} \mathrm{ix}_{\Omega}(g)|.$$

Jordan's theorem

Theorem (Jordan, 1872)

Every finite transitive permutation group of degree $n \ge 2$ contains a derangement.

The proof of Jordan's theorem is based on the following lemma:

Orbit-Counting Lemma (Burnside's Lemma)

Let $G \leq \text{Sym}(\Omega)$ be a finite permutation group. Then the number of orbits of G on Ω is the average number of fixed points of elements of G.

Let
$$\mathcal{F}ix(x) = \mathcal{F}ix_{\Omega}(x) = \{ \alpha \in \Omega : \alpha^{x} = \alpha \}.$$

Let *m* be the number of *G*-orbits on Ω . Then

$$m = rac{1}{|G|} \sum_{g \in G} |\mathcal{F} \mathrm{ix}_{\Omega}(g)|.$$

A proof of Orbit-Counting Lemma

- Consider the bipartite graph Γ with vertex set Ω ∪ G and there is an edge between α ∈ Ω, g ∈ G iff α^g = α.
- Count the number of edges of Γ in two different ways.

Existence

A proof of Orbit-Counting Lemma

- Consider the bipartite graph Γ with vertex set Ω ∪ G and there is an edge between α ∈ Ω, g ∈ G iff α^g = α.
- Count the number of edges of Γ in two different ways.

Existence

• Let Δ be a *G*-orbit on Ω and $\alpha \in \Delta$.

A proof of Orbit-Counting Lemma

- Consider the bipartite graph Γ with vertex set Ω ∪ G and there is an edge between α ∈ Ω, g ∈ G iff α^g = α.
- Count the number of edges of Γ in two different ways.

Existence

- Let Δ be a *G*-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $|G_{\alpha}| = \frac{|G|}{|\Delta|}$.

- Consider the bipartite graph Γ with vertex set Ω ∪ G and there is an edge between α ∈ Ω, g ∈ G iff α^g = α.
- Count the number of edges of Γ in two different ways.
- Let Δ be a *G*-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $|G_{\alpha}| = \frac{|G|}{|\Lambda|}$.
- So Δ has |G| edges and Γ has m|G| edges.

- Consider the bipartite graph Γ with vertex set Ω ∪ G and there is an edge between α ∈ Ω, g ∈ G iff α^g = α.
- Count the number of edges of Γ in two different ways.
- Let Δ be a *G*-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $|G_{\alpha}| = \frac{|G|}{|\Lambda|}$.
- So Δ has |G| edges and Γ has m|G| edges.
- For $g \in G$, there are exactly $|\mathcal{F}ix_{\Omega}(g)|$ edges.

- Consider the bipartite graph Γ with vertex set Ω ∪ G and there is an edge between α ∈ Ω, g ∈ G iff α^g = α.
- Count the number of edges of Γ in two different ways.
- Let Δ be a *G*-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $|G_{\alpha}| = \frac{|G|}{|\Lambda|}$.
- So Δ has |G| edges and Γ has m|G| edges.
- For $g \in G$, there are exactly $|\mathcal{F} \mathrm{ix}_{\Omega}(g)|$ edges.
- So Γ has $\sum_{g \in G} |\mathcal{F} \mathrm{ix}_{\Omega}(g)|$ edges.

- Consider the bipartite graph Γ with vertex set Ω ∪ G and there is an edge between α ∈ Ω, g ∈ G iff α^g = α.
- Count the number of edges of Γ in two different ways.
- Let Δ be a *G*-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $|G_{\alpha}| = \frac{|G|}{|\Lambda|}$.
- So Δ has |G| edges and Γ has m|G| edges.
- For $g \in G$, there are exactly $|\mathcal{F} \mathrm{ix}_\Omega(g)|$ edges.
- So Γ has $\sum_{g \in G} |\mathcal{F} \mathrm{ix}_{\Omega}(g)|$ edges.
- Therefore, $\sum_{g \in G} |\mathcal{F} i x_{\Omega}(g)| = m |G|$.

- Consider the bipartite graph Γ with vertex set Ω ∪ G and there is an edge between α ∈ Ω, g ∈ G iff α^g = α.
- Count the number of edges of Γ in two different ways.
- Let Δ be a *G*-orbit on Ω and $\alpha \in \Delta$.
- The number of edges going through α is $|G_{\alpha}| = \frac{|G|}{|\Lambda|}$.
- So Δ has |G| edges and Γ has m|G| edges.
- For $g \in G$, there are exactly $|\mathcal{F}\mathrm{ix}_\Omega(g)|$ edges.
- So Γ has $\sum_{g \in G} |\mathcal{F} \mathrm{ix}_{\Omega}(g)|$ edges.
- Therefore, $\sum_{g \in G} |\mathcal{F} \mathrm{ix}_\Omega(g)| = m |G|.$

• Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.

• By Jordan's theorem, G always contains a derangement.

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.
- By Jordan's theorem, G always contains a derangement.

Questions

• What is the proportion of derangements in G?

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.
- By Jordan's theorem, G always contains a derangement.

Questions

- What is the proportion of derangements in G?
- Does *G* contain derangements with special properties?

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.
- By Jordan's theorem, G always contains a derangement.

Questions

- What is the proportion of derangements in G?
- Does G contain derangements with special properties?
- What is the structure of G if we impose some restrictions on $\Delta(G)$?

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive permutation group.
- By Jordan's theorem, G always contains a derangement.

Questions

- What is the proportion of derangements in G?
- Does G contain derangements with special properties?
- What is the structure of G if we impose some restrictions on $\Delta(G)$?

Primitivity

- Let G ≤ Sym(Ω) be a transitive permutation group with point stabilizer H.
- A nonempty subset Δ ⊆ Ω is a block of G if Δ^g = Δ or Δ^g ∩ Δ = Ø for all g ∈ G.

Primitivity

- Let G ≤ Sym(Ω) be a transitive permutation group with point stabilizer H.
- A nonempty subset Δ ⊆ Ω is a block of G if Δ^g = Δ or Δ^g ∩ Δ = Ø for all g ∈ G.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.

Primitivity

- Let G ≤ Sym(Ω) be a transitive permutation group with point stabilizer H.
- A nonempty subset Δ ⊆ Ω is a block of G if Δ^g = Δ or Δ^g ∩ Δ = Ø for all g ∈ G.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If G = D₈ ≤ Sym(Ω) is the group of symmetries of a square with vertex set Ω = {1, 2, 3, 4}, then {1, 3} is a nontrivial block of G.

Primitivity

- Let G ≤ Sym(Ω) be a transitive permutation group with point stabilizer H.
- A nonempty subset Δ ⊆ Ω is a block of G if Δ^g = Δ or Δ^g ∩ Δ = Ø for all g ∈ G.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If G = D₈ ≤ Sym(Ω) is the group of symmetries of a square with vertex set Ω = {1, 2, 3, 4}, then {1, 3} is a nontrivial block of G.

Definition

A transitive group $G \leq \text{Sym}(\Omega)$ is imprimitive if G has a nontrivial block.

Primitivity

- Let G ≤ Sym(Ω) be a transitive permutation group with point stabilizer H.
- A nonempty subset Δ ⊆ Ω is a block of G if Δ^g = Δ or Δ^g ∩ Δ = Ø for all g ∈ G.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If G = D₈ ≤ Sym(Ω) is the group of symmetries of a square with vertex set Ω = {1, 2, 3, 4}, then {1, 3} is a nontrivial block of G.

Definition

A transitive group $G \leq \text{Sym}(\Omega)$ is imprimitive if G has a nontrivial block. Otherwise, G is primitive.

Primitivity

- Let G ≤ Sym(Ω) be a transitive permutation group with point stabilizer H.
- A nonempty subset Δ ⊆ Ω is a block of G if Δ^g = Δ or Δ^g ∩ Δ = Ø for all g ∈ G.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If G = D₈ ≤ Sym(Ω) is the group of symmetries of a square with vertex set Ω = {1, 2, 3, 4}, then {1, 3} is a nontrivial block of G.

Definition

A transitive group $G \leq \text{Sym}(\Omega)$ is imprimitive if G has a nontrivial block. Otherwise, G is primitive.

Equivalently, G is primitive if and only if the point stabilizer G_{α} is a maximal subgroup of G.

HP. Tong-Viet (UP)

Derangements in primitive groups

July 28, 2015 13 / 31

Primitivity

- Let G ≤ Sym(Ω) be a transitive permutation group with point stabilizer H.
- A nonempty subset Δ ⊆ Ω is a block of G if Δ^g = Δ or Δ^g ∩ Δ = Ø for all g ∈ G.
- Ω and $\{\alpha\}$ for $\alpha \in \Omega$ are trivial blocks of G.
- If G = D₈ ≤ Sym(Ω) is the group of symmetries of a square with vertex set Ω = {1, 2, 3, 4}, then {1, 3} is a nontrivial block of G.

Definition

A transitive group $G \leq \text{Sym}(\Omega)$ is imprimitive if G has a nontrivial block. Otherwise, G is primitive.

Equivalently, G is primitive if and only if the point stabilizer G_{α} is a maximal subgroup of G.

HP. Tong-Viet (UP)

Derangements in primitive groups

Almost simple and Affine groups

Definition

A transitive group $G \leq \text{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \trianglelefteq G \leq \text{Aut}(T)$.

G is primitive if and only if G_{α} is maximal in *G*.

Definition

A transitive group $G \leq \text{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \trianglelefteq G \leq \text{Aut}(T)$.

G is primitive if and only if G_{α} is maximal in *G*.

Definition

Let p be a prime and let $V = \mathbb{Z}_p^d$. Let $AGL(V) = V \rtimes GL(V)$ be the group of affine transformations of V :

$$\tau_{x,u}(v) = vx + u$$
 (for $x \in \operatorname{GL}(V), u \in V$).

Definition

A transitive group $G \leq \text{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \trianglelefteq G \leq \text{Aut}(T)$.

G is primitive if and only if G_{α} is maximal in G.

Definition

Let p be a prime and let $V = \mathbb{Z}_p^d$. Let $AGL(V) = V \rtimes GL(V)$ be the group of affine transformations of V :

$$\tau_{x,u}(v) = vx + u$$
 (for $x \in GL(V), u \in V$).

 $G \leq \operatorname{Sym}(V)$ is affine if $V \leq G \leq \operatorname{AGL}(V)$.

Definition

A transitive group $G \leq \text{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \trianglelefteq G \leq \text{Aut}(T)$.

G is primitive if and only if G_{α} is maximal in *G*.

Definition

Let p be a prime and let $V = \mathbb{Z}_p^d$. Let $AGL(V) = V \rtimes GL(V)$ be the group of affine transformations of V :

$$au_{x,u}(v) = vx + u$$
 (for $x \in \operatorname{GL}(V), u \in V$).

 $G \leq \operatorname{Sym}(V)$ is affine if $V \trianglelefteq G \leq \operatorname{AGL}(V)$.

G is primitive if and only if $G_0 \leq \operatorname{GL}(V)$ is irreducible.

Definition

A transitive group $G \leq \text{Sym}(\Omega)$ is almost simple if there exists a nonabelian simple group T such that $T \trianglelefteq G \leq \text{Aut}(T)$.

G is primitive if and only if G_{α} is maximal in *G*.

Definition

Let p be a prime and let $V = \mathbb{Z}_p^d$. Let $AGL(V) = V \rtimes GL(V)$ be the group of affine transformations of V :

$$au_{x,u}(v) = vx + u$$
 (for $x \in \operatorname{GL}(V), u \in V$).

 $G \leq \text{Sym}(V)$ is affine if $V \trianglelefteq G \leq \text{AGL}(V)$.

G is primitive if and only if $G_0 \leq \operatorname{GL}(V)$ is irreducible.

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:

• G is almost simple.

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:

0 *G* is almost simple.

G is of affine type.

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:

1 G is almost simple.

- G is of affine type.
- 3 G is of diagonal type.

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:

- **1** G is almost simple.
- **Q** G is of affine type.
- **③** *G* is of diagonal type.
- G is of product type.

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:

- **1** G is almost simple.
- **Q** G is of affine type.
- 3 G is of diagonal type.
- G is of product type.
- **G** is of twisted wreath product type.

Theorem

Let $G \leq \operatorname{Sym}(\Omega)$ be a finite primitive permutation group. Then one of the following holds:

- **1** G is almost simple.
- **Q** G is of affine type.
- **3** *G* is of diagonal type.
- G is of product type.
- *G* is of twisted wreath product type.
- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.
- We have d(G) > 0 by Jordan's theorem.

Bounding d(G) in terms of the degree

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.
- We have d(G) > 0 by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.
- We have d(G) > 0 by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

 $d(G) \ge \frac{1}{n}$ with equality if and only if G is sharply 2-transitive.

• *G* is 2-transitive if the natural action of *G* on $\Gamma = \{(\alpha, \beta) : \alpha \neq \beta \in \Omega\}$ is transitive.

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.
- We have d(G) > 0 by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

- *G* is 2-transitive if the natural action of *G* on $\Gamma = \{(\alpha, \beta) : \alpha \neq \beta \in \Omega\}$ is transitive.
- It is sharply 2-transitive if furthermore, $G_{(\alpha,\beta)} = 1$ for some $(\alpha,\beta) \in \Gamma$.

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.
- We have d(G) > 0 by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

- *G* is 2-transitive if the natural action of *G* on $\Gamma = \{(\alpha, \beta) : \alpha \neq \beta \in \Omega\}$ is transitive.
- It is sharply 2-transitive if furthermore, $G_{(\alpha,\beta)} = 1$ for some $(\alpha,\beta) \in \Gamma$.
- This bound is best possible but we can get better bounds by allowing more exceptions.

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.
- We have d(G) > 0 by Jordan's theorem.

Theorem (Cameron-Cohen, 1992)

- *G* is 2-transitive if the natural action of *G* on $\Gamma = \{(\alpha, \beta) : \alpha \neq \beta \in \Omega\}$ is transitive.
- It is sharply 2-transitive if furthermore, $G_{(\alpha,\beta)} = 1$ for some $(\alpha,\beta) \in \Gamma$.
- This bound is best possible but we can get better bounds by allowing more exceptions.

• Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.

Theorem (Guralnick-Wan, 1997)

One of the following holds.

- $d(G) \ge 2/n$.
- *G* is sharply 2-transitive.
- $(G, n, d(G)) = (S_5, 5, 11/30)$ or $(S_4, 4, 3/8)$.

• Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.

Theorem (Guralnick-Wan, 1997)

One of the following holds.

- $d(G) \ge 2/n$.
- G is sharply 2-transitive.
- $(G, n, d(G)) = (S_5, 5, 11/30)$ or $(S_4, 4, 3/8)$.

• The proof uses the classification of 2-transitive groups.

• Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.

Theorem (Guralnick-Wan, 1997)

One of the following holds.

- $d(G) \ge 2/n$.
- G is sharply 2-transitive.
- $(G, n, d(G)) = (S_5, 5, 11/30)$ or $(S_4, 4, 3/8)$.
- The proof uses the classification of 2-transitive groups.
- This result has applications to algebraic curves over finite fields.

• Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with $n = |\Omega| \geq 2$.

Theorem (Guralnick-Wan, 1997)

One of the following holds.

- $d(G) \ge 2/n$.
- G is sharply 2-transitive.
- $(G, n, d(G)) = (S_5, 5, 11/30)$ or $(S_4, 4, 3/8)$.
- The proof uses the classification of 2-transitive groups.
- This result has applications to algebraic curves over finite fields.

Bounding d(G) in terms of the rank

- Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with $n = |\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

 $d(G) \leq 1 - \frac{1}{r}$ with equality if and only if G acts regularly.

Bounding d(G) in terms of the rank

- Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with $n = |\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

 $d(G) \leq 1 - \frac{1}{r}$ with equality if and only if G acts regularly.

• Let π be the permutation character of G.

Bounding d(G) in terms of the rank

- Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with $n = |\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

 $d(G) \leq 1 - \frac{1}{r}$ with equality if and only if G acts regularly.

- Let π be the permutation character of G.
- Observe that $(\pi,\pi)=r$ and $\pi(g)=0$ for all $g\in\Delta(G).$ We have

Bounding d(G) in terms of the rank

- Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with $n = |\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

 $d(G) \leq 1 - \frac{1}{r}$ with equality if and only if G acts regularly.

- Let π be the permutation character of G.
- Observe that $(\pi,\pi)=r$ and $\pi(g)=0$ for all $g\in\Delta(G).$ We have

$$r|G| = \sum_{g \in G} \pi(g)^2 = \sum_{g \in G \setminus \Delta(G)} \pi(g)^2 \ge \frac{1}{|G| - |\Delta(G)|} (\sum_{g \in G \setminus \Delta(G)} \pi(g))^2.$$

Bounding d(G) in terms of the rank

- Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with $n = |\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

 $d(G) \leq 1 - \frac{1}{r}$ with equality if and only if G acts regularly.

- Let π be the permutation character of G.
- Observe that $(\pi,\pi)=r$ and $\pi(g)=0$ for all $g\in\Delta(G).$ We have

$$r|G| = \sum_{g \in G} \pi(g)^2 = \sum_{g \in G \setminus \Delta(G)} \pi(g)^2 \ge \frac{1}{|G| - |\Delta(G)|} (\sum_{g \in G \setminus \Delta(G)} \pi(g))^2.$$

• As $(\pi, 1_G) = 1$ we have $|G| = \sum_{g \in G} \pi(g) = \sum_{g \in G \setminus \Delta(G)} \pi(g)$. • So $r|G| \ge \frac{|G|^2}{|G| - |\Delta(G)|}$ and the first part holds.

HP. Tong-Viet (UP)

Bounding d(G) in terms of the rank

- Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group with $n = |\Omega| \geq 2$.
- The rank of G is the number of orbits of G on $\Omega \times \Omega$.

Theorem (Guralnick-Isaacs-Spiga, 2015)

 $d(G) \leq 1 - \frac{1}{r}$ with equality if and only if G acts regularly.

- Let π be the permutation character of G.
- Observe that $(\pi,\pi)=r$ and $\pi(g)=0$ for all $g\in\Delta(G).$ We have

$$r|G| = \sum_{g \in G} \pi(g)^2 = \sum_{g \in G \setminus \Delta(G)} \pi(g)^2 \ge \frac{1}{|G| - |\Delta(G)|} (\sum_{g \in G \setminus \Delta(G)} \pi(g))^2.$$

- As $(\pi, 1_G) = 1$ we have $|G| = \sum_{g \in G} \pi(g) = \sum_{g \in G \setminus \Delta(G)} \pi(g)$.
- So $r|G| \ge \frac{|G|^2}{|G| |\Delta(G)|}$ and the first part holds.

• Montmort's theorem: $d(S_n) \geq \frac{1}{e}$.

• Question: what is the asymptotic behavior of d(G) for other infinite families of groups?

- Montmort's theorem: $d(S_n) \geq \frac{1}{e}$.
- Question: what is the asymptotic behavior of d(G) for other infinite families of groups?
- $d(A_n) \ge \frac{1}{3}$ and $d(PSL_2(q)) \ge \frac{1}{3}$ for all $n, q \ge 5$.

- Montmort's theorem: $d(S_n) \geq \frac{1}{e}$.
- Question: what is the asymptotic behavior of d(G) for other infinite families of groups?
- $d(A_n) \ge \frac{1}{3}$ and $d(PSL_2(q)) \ge \frac{1}{3}$ for all $n, q \ge 5$.

Theorem (Fulman-Guralnick, 2014)

There exists an absolute constant $\epsilon > 0$ so that $d(G) > \epsilon$ for all simple transitive group G.

- Montmort's theorem: $d(S_n) \ge \frac{1}{e}$.
- Question: what is the asymptotic behavior of d(G) for other infinite families of groups?
- $d(A_n) \ge \frac{1}{3}$ and $d(PSL_2(q)) \ge \frac{1}{3}$ for all $n, q \ge 5$.

Theorem (Fulman-Guralnick, 2014)

There exists an absolute constant $\epsilon > 0$ so that $d(G) > \epsilon$ for all simple transitive group G.

• The absolute constant ϵ is unknown.

- Montmort's theorem: $d(S_n) \ge \frac{1}{e}$.
- Question: what is the asymptotic behavior of d(G) for other infinite families of groups?
- $d(A_n) \ge \frac{1}{3}$ and $d(PSL_2(q)) \ge \frac{1}{3}$ for all $n, q \ge 5$.

Theorem (Fulman-Guralnick, 2014)

There exists an absolute constant $\epsilon > 0$ so that $d(G) > \epsilon$ for all simple transitive group G.

- The absolute constant ϵ is unknown.
- This confirms a conjecture due to Boston et al. (1993) and Shalev.

- Montmort's theorem: $d(S_n) \ge \frac{1}{e}$.
- Question: what is the asymptotic behavior of d(G) for other infinite families of groups?
- $d(A_n) \ge \frac{1}{3}$ and $d(PSL_2(q)) \ge \frac{1}{3}$ for all $n, q \ge 5$.

Theorem (Fulman-Guralnick, 2014)

There exists an absolute constant $\epsilon > 0$ so that $d(G) > \epsilon$ for all simple transitive group G.

- The absolute constant ϵ is unknown.
- This confirms a conjecture due to Boston et al. (1993) and Shalev.

Question: Does G contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

Question: Does *G* contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

• Let G be a counterexample with |G| minimal.

Question: Does *G* contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

• Let G be a counterexample with |G| minimal.

• We can assume that *G* is primitive.

Question: Does *G* contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with |G| minimal.
- We can assume that G is primitive.
- Let $1 \neq N \leq G$. Then N is transitive. So by the minimality of |G|, we can assume N = G. Thus G is a simple group.

Question: Does *G* contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with |G| minimal.
- We can assume that G is primitive.
- Let $1 \neq N \leq G$. Then N is transitive. So by the minimality of |G|, we can assume N = G. Thus G is a simple group.

Question: Find a proof of FKS-theorem without using the classification.

Question: Does *G* contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with |G| minimal.
- We can assume that G is primitive.
- Let $1 \neq N \leq G$. Then N is transitive. So by the minimality of |G|, we can assume N = G. Thus G is a simple group.

Question: Find a proof of FKS-theorem without using the classification.

Theorem

Let L/K be a finite extension of global fields with $L \neq K$. Then the relative Brauer group B(L/K) is infinite.

Question: Does G contain derangements of prime power order?

Theorem (Fein, Kantor, Schacher, 1981)

Every transitive group contains a derangement of prime power order.

- Let G be a counterexample with |G| minimal.
- We can assume that G is primitive.
- Let $1 \neq N \leq G$. Then N is transitive. So by the minimality of |G|, we can assume N = G. Thus G is a simple group.

Question: Find a proof of FKS-theorem without using the classification.

Theorem

Let L/K be a finite extension of global fields with $L \neq K$. Then the relative Brauer group B(L/K) is infinite.

Question: Does transitive group contain derangements of prime order?

• Let $G = M_{11}$, $H = PSL_2(11)$ and $\Omega = G/H$.

Question: Does transitive group contain derangements of prime order?

- Let $G = M_{11}, H = PSL_2(11)$ and $\Omega = G/H$.
- Then every element in $\Delta(G)$ has order 4 or 8.

Question: Does transitive group contain derangements of prime order?

- Let $G = M_{11}, H = PSL_2(11)$ and $\Omega = G/H$.
- Then every element in $\Delta(G)$ has order 4 or 8.

A transitive group is elusive if it has no derangement of prime order.

Question: Does transitive group contain derangements of prime order?

- Let $G = M_{11}$, $H = PSL_2(11)$ and $\Omega = G/H$.
- Then every element in $\Delta(G)$ has order 4 or 8.

A transitive group is elusive if it has no derangement of prime order.

Theorem (Giudici, 2003)

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive elusive group. Then $G = M_{11} \wr L$ acting with its product action on $\Omega = \Gamma^k$, where $k \geq 1, L \leq S_k$ is transitive and $|\Gamma| = 12$.

Question: Does transitive group contain derangements of prime order?

- Let $G = M_{11}$, $H = PSL_2(11)$ and $\Omega = G/H$.
- Then every element in $\Delta(G)$ has order 4 or 8.

A transitive group is elusive if it has no derangement of prime order.

Theorem (Giudici, 2003)

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive elusive group. Then $G = M_{11} \wr L$ acting with its product action on $\Omega = \Gamma^k$, where $k \geq 1, L \leq S_k$ is transitive and $|\Gamma| = 12$.

Conjecture (Marušič, 1981)

Every finite vertex-transitive digraph contains a derangement of prime order.

Question: Does transitive group contain derangements of prime order?

- Let $G = M_{11}$, $H = PSL_2(11)$ and $\Omega = G/H$.
- Then every element in $\Delta(G)$ has order 4 or 8.

A transitive group is elusive if it has no derangement of prime order.

Theorem (Giudici, 2003)

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive elusive group. Then $G = M_{11} \wr L$ acting with its product action on $\Omega = \Gamma^k$, where $k \geq 1, L \leq S_k$ is transitive and $|\Gamma| = 12$.

Conjecture (Marušič, 1981)

Every finite vertex-transitive digraph contains a derangement of prime order.

Conjugacy classes

- Let $G \leq Sym(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- Let $G \leq Sym(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \geq 1$.

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \ge 1$.

Theorem (Burness &T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G) = 1$ if and only if

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \ge 1$.

Theorem (Burness &T-V, 2014)

Let G be a finite primitive group of degree n. Then κ(G) = 1 if and only if
G is sharply 2-transitive or

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \ge 1$.

Theorem (Burness &T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G) = 1$ if and only if

- G is sharply 2-transitive or
- $(G, n) = (A_5, 6)$ or $(Aut(PSL_2(8)), 28)$.

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \ge 1$.

Theorem (Burness &T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G) = 1$ if and only if

- G is sharply 2-transitive or
- $(G, n) = (A_5, 6)$ or $(Aut(PSL_2(8)), 28)$.

• 'Primitivity' was replaced by 'transitivity' by (Guralnick, 2015).

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \ge 1$.

Theorem (Burness &T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G) = 1$ if and only if

- G is sharply 2-transitive or
- $(G, n) = (A_5, 6)$ or $(Aut(PSL_2(8)), 28)$.
- 'Primitivity' was replaced by 'transitivity' by (Guralnick, 2015).
- For almost simple groups G, we have $\kappa(G) \to \infty$ when $|G| \to \infty$.

- Let $G \leq \text{Sym}(\Omega)$ be a finite transitive group with point stabilizer H.
- Let $\kappa(G)$ be the number of conjugacy classes in $\Delta(G)$.
- (Jordan's theorem) $\kappa(G) \ge 1$.

Theorem (Burness &T-V, 2014)

Let G be a finite primitive group of degree n. Then $\kappa(G) = 1$ if and only if

- G is sharply 2-transitive or
- $(G, n) = (A_5, 6)$ or $(Aut(PSL_2(8)), 28)$.
- 'Primitivity' was replaced by 'transitivity' by (Guralnick, 2015).
- For almost simple groups G, we have $\kappa(G) \to \infty$ when $|G| \to \infty$.

Theorem (Reduction)

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G) = 1$ if and only if G is almost simple or G is sharply 2-transitive.

• Suppose $\Delta(G) = x^G$.

Theorem (Reduction)

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G) = 1$ if and only if G is almost simple or G is sharply 2-transitive.

• Suppose $\Delta(G) = x^G$.

• Let $N \leq G$ and $H = G_{\alpha}$. Then N is transitive and G = HN.

Theorem (Reduction)

Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group. Then $\kappa(G) = 1$ if and only if G is almost simple or G is sharply 2-transitive.

- Suppose $\Delta(G) = x^G$.
- Let $N \trianglelefteq G$ and $H = G_{\alpha}$. Then N is transitive and G = HN.

• Case N is regular: $H \cap N = 1$ and $N = \{1\} \cup x^G$.

Theorem (Reduction)

- Suppose $\Delta(G) = x^G$.
- Let $N \trianglelefteq G$ and $H = G_{\alpha}$. Then N is transitive and G = HN.
- Case N is regular: $H \cap N = 1$ and $N = \{1\} \cup x^{G}$.
- If N is nonabelian, then |N| is divisible by at least 3 primes. Thus N is abelain and so N ≤ C_G(x).

Theorem (Reduction)

- Suppose $\Delta(G) = x^G$.
- Let $N \trianglelefteq G$ and $H = G_{\alpha}$. Then N is transitive and G = HN.
- Case N is regular: $H \cap N = 1$ and $N = \{1\} \cup x^{G}$.
- If N is nonabelian, then |N| is divisible by at least 3 primes. Thus N is abelain and so N ≤ C_G(x).
- $|\Delta(G)| = |G : C_G(x)| \le |G : N| = |H| = |G|/n$. Thus $d(G) \le \frac{1}{n}$.

Theorem (Reduction)

- Suppose $\Delta(G) = x^G$.
- Let $N \trianglelefteq G$ and $H = G_{\alpha}$. Then N is transitive and G = HN.
- Case N is regular: $H \cap N = 1$ and $N = \{1\} \cup x^{G}$.
- If N is nonabelian, then |N| is divisible by at least 3 primes. Thus N is abelain and so N ≤ C_G(x).
- $|\Delta(G)| = |G : C_G(x)| \le |G : N| = |H| = |G|/n$. Thus $d(G) \le \frac{1}{n}$.
- However, Cameron-Cohen implies that d(G) ≥ ¹/_n with equality iff G is sharply 2-transitive.

Theorem (Reduction)

- Suppose $\Delta(G) = x^G$.
- Let $N \trianglelefteq G$ and $H = G_{\alpha}$. Then N is transitive and G = HN.
- Case N is regular: $H \cap N = 1$ and $N = \{1\} \cup x^{G}$.
- If N is nonabelian, then |N| is divisible by at least 3 primes. Thus N is abelain and so N ≤ C_G(x).
- $|\Delta(G)| = |G : C_G(x)| \le |G : N| = |H| = |G|/n$. Thus $d(G) \le \frac{1}{n}$.
- However, Cameron-Cohen implies that d(G) ≥ ¹/_n with equality iff G is sharply 2-transitive.
- Case N is not regular: G is almost simple.

Theorem (Reduction)

- Suppose $\Delta(G) = x^G$.
- Let $N \trianglelefteq G$ and $H = G_{\alpha}$. Then N is transitive and G = HN.
- Case N is regular: $H \cap N = 1$ and $N = \{1\} \cup x^{G}$.
- If N is nonabelian, then |N| is divisible by at least 3 primes. Thus N is abelain and so N ≤ C_G(x).
- $|\Delta(G)| = |G : C_G(x)| \le |G : N| = |H| = |G|/n$. Thus $d(G) \le \frac{1}{n}$.
- However, Cameron-Cohen implies that d(G) ≥ ¹/_n with equality iff G is sharply 2-transitive.
- Case N is not regular: G is almost simple.

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

• one of the 26 sporadic simple groups;

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_n wih $n \ge 5$;

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_n wih $n \ge 5$;

a finite simple group of Lie type.

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_n wih $n \ge 5$;

• a finite simple group of Lie type.

• Use GAP or ATLAS for sporadic simple groups.

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_n wih $n \ge 5$;
- a finite simple group of Lie type.

• Use GAP or ATLAS for sporadic simple groups.

(Jordan's theorem) If G is a primitive group of degree n containing a cycle of prime length fixing at least 3 points, then A_n ≤ G.

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_n wih $n \ge 5$;

• a finite simple group of Lie type.

- Use GAP or ATLAS for sporadic simple groups.
- (Jordan's theorem) If G is a primitive group of degree n containing a cycle of prime length fixing at least 3 points, then A_n ≤ G.
- For groups of Lie type G with simple socle T, choose two distinct conjugacy classes x₁^G and x₂^G, where x_i ∈ T such that both x_i's lie in a small number of maximal subgroups of G.

Theorem (CFSG)

Every non-abelian finite simple group is one of the following:

- one of the 26 sporadic simple groups;
- an alternating group A_n wih $n \ge 5$;

• a finite simple group of Lie type.

- Use GAP or ATLAS for sporadic simple groups.
- (Jordan's theorem) If G is a primitive group of degree n containing a cycle of prime length fixing at least 3 points, then A_n ≤ G.
- For groups of Lie type G with simple socle T, choose two distinct conjugacy classes x₁^G and x₂^G, where x_i ∈ T such that both x_i's lie in a small number of maximal subgroups of G.

- Let G be a finite group and let Irr(G) be the set of complex irreducible characters of G.
- Let $\chi \in Irr(G)$ with $\chi(1) > 1$.

- Let G be a finite group and let Irr(G) be the set of complex irreducible characters of G.
- Let $\chi \in Irr(G)$ with $\chi(1) > 1$.
- (Burnside's theorem, 1911): $\chi(g) = 0$ for some $g \in G$.

- Let G be a finite group and let Irr(G) be the set of complex irreducible characters of G.
- Let $\chi \in Irr(G)$ with $\chi(1) > 1$.
- (Burnside's theorem, 1911): $\chi(g) = 0$ for some $g \in G$.
- (Malle, Navarro, Olsson, 2000): χ(g) = 0 for some g ∈ G of prime power order.

- Let G be a finite group and let Irr(G) be the set of complex irreducible characters of G.
- Let $\chi \in Irr(G)$ with $\chi(1) > 1$.
- (Burnside's theorem, 1911): $\chi(g) = 0$ for some $g \in G$.
- (Malle, Navarro, Olsson, 2000): χ(g) = 0 for some g ∈ G of prime power order.
- Let $n(\chi)$ be the number of *G*-classes on which *G* vanishes.

- Let G be a finite group and let Irr(G) be the set of complex irreducible characters of G.
- Let $\chi \in Irr(G)$ with $\chi(1) > 1$.
- (Burnside's theorem, 1911): $\chi(g) = 0$ for some $g \in G$.
- (Malle, Navarro, Olsson, 2000): χ(g) = 0 for some g ∈ G of prime power order.
- Let $n(\chi)$ be the number of G-classes on which G vanishes.

Problem

Classify all the pairs (G, χ) with $n(\chi) = 1$ for some nonlinear $\chi \in Irr(G)$.

- Let G be a finite group and let Irr(G) be the set of complex irreducible characters of G.
- Let $\chi \in Irr(G)$ with $\chi(1) > 1$.
- (Burnside's theorem, 1911): $\chi(g) = 0$ for some $g \in G$.
- (Malle, Navarro, Olsson, 2000): χ(g) = 0 for some g ∈ G of prime power order.
- Let $n(\chi)$ be the number of *G*-classes on which *G* vanishes.

Problem

Classify all the pairs (G, χ) with $n(\chi) = 1$ for some nonlinear $\chi \in Irr(G)$.

 If χ is imprimitive, i.e., χ = θ^G for some θ ∈ Irr(H) with H < G, then n(χ) = 1 implies that G \ ∪_{g∈G}H^g = x^G for some g ∈ G.

• If *H* is core-free, then our theorem applies.

- If χ is imprimitive, i.e., χ = θ^G for some θ ∈ Irr(H) with H < G, then n(χ) = 1 implies that G \ ∪_{g∈G}H^g = x^G for some g ∈ G.
- If H is core-free, then our theorem applies.
- In general, we obtain some restriction on the normal structure of G.

- If χ is imprimitive, i.e., χ = θ^G for some θ ∈ Irr(H) with H < G, then n(χ) = 1 implies that G \ ∪_{g∈G}H^g = x^G for some g ∈ G.
- If H is core-free, then our theorem applies.
- In general, we obtain some restriction on the normal structure of G.

Remarks

 If G ≤ Sym(Ω) is primitive and κ(G) = 2, then G is either almost simple or affine.

- If χ is imprimitive, i.e., χ = θ^G for some θ ∈ Irr(H) with H < G, then n(χ) = 1 implies that G \ ∪_{g∈G}H^g = x^G for some g ∈ G.
- If H is core-free, then our theorem applies.
- In general, we obtain some restriction on the normal structure of G.

Remarks

- If G ≤ Sym(Ω) is primitive and κ(G) = 2, then G is either almost simple or affine.
- If Δ(G) = x^G, then every element in Δ(G) has the same order which is a power of some prime.

- If χ is imprimitive, i.e., χ = θ^G for some θ ∈ Irr(H) with H < G, then n(χ) = 1 implies that G \ ∪_{g∈G}H^g = x^G for some g ∈ G.
- If H is core-free, then our theorem applies.
- In general, we obtain some restriction on the normal structure of G.

Remarks

- If G ≤ Sym(Ω) is primitive and κ(G) = 2, then G is either almost simple or affine.
- If Δ(G) = x^G, then every element in Δ(G) has the same order which is a power of some prime.

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): *G* has a derangement of prime power order.

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): *G* has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

Derangements of prime power order

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): *G* has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

• G is an elementary abelian 2-group; or
- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): *G* has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

- G is an elementary abelian 2-group; or
- G is a Frobenius group with an elementary abelian 2-group kernel.

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): *G* has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

- G is an elementary abelian 2-group; or
- G is a Frobenius group with an elementary abelian 2-group kernel.

Problem 1: Classify transitive groups in which all derangements have prime order p > 2.

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): *G* has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

- G is an elementary abelian 2-group; or
- G is a Frobenius group with an elementary abelian 2-group kernel.

Problem 1: Classify transitive groups in which all derangements have prime order p > 2.

Problem 2: Classify transitive groups whose all derangements are *r*-elements for some fixed prime *r*.

- Let $G \leq \operatorname{Sym}(\Omega)$ be a finite transitive group.
- (Fein, Kantor, Schacher, 1981): *G* has a derangement of prime power order.

Theorem (Isaacs, Keller, Lewis, Moretó, 2006)

If every derangement in G is an involution, then either

- G is an elementary abelian 2-group; or
- G is a Frobenius group with an elementary abelian 2-group kernel.

Problem 1: Classify transitive groups in which all derangements have prime order p > 2.

Problem 2: Classify transitive groups whose all derangements are *r*-elements for some fixed prime *r*.

- Let $G \leq Sym(\Omega)$ be a finite primitive group with point stabilizer H.
- Property (*): Every derangement in *G* is an *r*-element for some fixed prime *r*.

- Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.
- Property (*): Every derangement in G is an r-element for some fixed prime r.

Theorem (Burness & TV, 2014)

• If (*) holds, then G is either almost simple or affine.

- Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.
- Property (*): Every derangement in G is an r-element for some fixed prime r.

Theorem (Burness & TV, 2014)

- If (*) holds, then G is either almost simple or affine.
- The almost simple groups satisfying (*) are completely classified. We have Soc(G) = PSL₂(q), PSL₃(q) for some prime power q or $(G, H) = (M_{11}, PSL_2(11)).$

- Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.
- Property (*): Every derangement in G is an r-element for some fixed prime r.

Theorem (Burness & TV, 2014)

- If (*) holds, then G is either almost simple or affine.
- The almost simple groups satisfying (*) are completely classified. We have Soc(G) = PSL₂(q), PSL₃(q) for some prime power q or (G, H) = (M₁₁, PSL₂(11)).
- If G ≤ AGL(V) is affine with V = Z^d_p, then (*) holds iff r = p and every two point stabilizer in G is an r-group.

- Let $G \leq \text{Sym}(\Omega)$ be a finite primitive group with point stabilizer H.
- Property (*): Every derangement in G is an r-element for some fixed prime r.

Theorem (Burness & TV, 2014)

- If (*) holds, then G is either almost simple or affine.
- The almost simple groups satisfying (*) are completely classified. We have Soc(G) = PSL₂(q), PSL₃(q) for some prime power q or (G, H) = (M₁₁, PSL₂(11)).
- If G ≤ AGL(V) is affine with V = Z^d_p, then (*) holds iff r = p and every two point stabilizer in G is an r-group.

- The affine groups with property (*) have been studied extensively.
- (Guralnick, Wan, 1992): Structure of Galois field extension

- The affine groups with property (*) have been studied extensively.
- (Guralnick, Wan, 1992): Structure of Galois field extension
- (Fleischmann, Lempken, Tiep, 1997): r'-semiregular pairs.

- The affine groups with property (*) have been studied extensively.
- (Guralnick, Wan, 1992): Structure of Galois field extension
- (Fleischmann, Lempken, Tiep, 1997): r'-semiregular pairs.

```
Definition
Let G \leq \text{Sym}(\Omega) be a transitive group. Set
m = \max\{|\Gamma^x \setminus \Gamma| : \Gamma \subseteq \Omega, x \in G\}.
```

We say that *G* has movement *m*.

- The affine groups with property (*) have been studied extensively.
- (Guralnick, Wan, 1992): Structure of Galois field extension
- (Fleischmann, Lempken, Tiep, 1997): r'-semiregular pairs.

Definition

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive group. Set

$$m = \max\{|\Gamma^x \setminus \Gamma| : \Gamma \subseteq \Omega, x \in G\}.$$

We say that G has movement m.

Theorem (Hassani, Khayaty, Khukhro, Praeger, 1999)

If G is not a 2-group and $n = \lfloor 2mp/(p-1) \rfloor$, where $p \ge 5$ is the least odd prime dividing |G|, then $p \mid n$ and every derangement in G has order p.

- The affine groups with property (*) have been studied extensively.
- (Guralnick, Wan, 1992): Structure of Galois field extension
- (Fleischmann, Lempken, Tiep, 1997): r'-semiregular pairs.

Definition

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive group. Set

$$m = \max\{|\Gamma^x \setminus \Gamma| : \Gamma \subseteq \Omega, x \in G\}.$$

We say that G has movement m.

Theorem (Hassani, Khayaty, Khukhro, Praeger, 1999)

If G is not a 2-group and $n = \lfloor 2mp/(p-1) \rfloor$, where $p \ge 5$ is the least odd prime dividing |G|, then $p \mid n$ and every derangement in G has order p.

Problem (Mann-Praeger, 1996)

If $G \leq \text{Sym}(\Omega)$ is a transitive *p*-group for some prime *p*, then every derangement of *G* has order *p* if and only if *G* has exponent *p*.

• (Mann-Praeger, 1996): This is true if p = 2, 3.

Problem (Mann-Praeger, 1996)

If $G \leq \text{Sym}(\Omega)$ is a transitive *p*-group for some prime *p*, then every derangement of *G* has order *p* if and only if *G* has exponent *p*.

• (Mann-Praeger, 1996): This is true if p = 2, 3.

Conjecture

Let $G = HV \leq AGL(V)$ be a finite affine primitive group with point stabilizer $H = G_0$ and socle $V = (\mathbb{Z}_p)^k$, where p is a prime and $k \geq 1$.

Problem (Mann-Praeger, 1996)

If $G \leq \text{Sym}(\Omega)$ is a transitive *p*-group for some prime *p*, then every derangement of *G* has order *p* if and only if *G* has exponent *p*.

• (Mann-Praeger, 1996): This is true if p = 2, 3.

Conjecture

Let $G = HV \leq AGL(V)$ be a finite affine primitive group with point stabilizer $H = G_0$ and socle $V = (\mathbb{Z}_p)^k$, where p is a prime and $k \geq 1$. Then G has property (*) iff r = p and the following two conditions hold:

Problem (Mann-Praeger, 1996)

If $G \leq \text{Sym}(\Omega)$ is a transitive *p*-group for some prime *p*, then every derangement of *G* has order *p* if and only if *G* has exponent *p*.

• (Mann-Praeger, 1996): This is true if p = 2, 3.

Conjecture

Let $G = HV \leq AGL(V)$ be a finite affine primitive group with point stabilizer $H = G_0$ and socle $V = (\mathbb{Z}_p)^k$, where p is a prime and $k \geq 1$. Then G has property (*) iff r = p and the following two conditions hold:

(i) Every two-point stabilizer in G is an r-group;

Problem (Mann-Praeger, 1996)

If $G \leq \text{Sym}(\Omega)$ is a transitive *p*-group for some prime *p*, then every derangement of *G* has order *p* if and only if *G* has exponent *p*.

• (Mann-Praeger, 1996): This is true if p = 2, 3.

Conjecture

Let $G = HV \leq AGL(V)$ be a finite affine primitive group with point stabilizer $H = G_0$ and socle $V = (\mathbb{Z}_p)^k$, where p is a prime and $k \geq 1$. Then G has property (*) iff r = p and the following two conditions hold:

(i) Every two-point stabilizer in G is an r-group;

(ii) A Sylow *r*-subgroup of G has exponent r.

Problem (Mann-Praeger, 1996)

If $G \leq \text{Sym}(\Omega)$ is a transitive *p*-group for some prime *p*, then every derangement of *G* has order *p* if and only if *G* has exponent *p*.

• (Mann-Praeger, 1996): This is true if p = 2, 3.

Conjecture

Let $G = HV \leq AGL(V)$ be a finite affine primitive group with point stabilizer $H = G_0$ and socle $V = (\mathbb{Z}_p)^k$, where p is a prime and $k \geq 1$. Then G has property (*) iff r = p and the following two conditions hold:

- (i) Every two-point stabilizer in G is an r-group;
- (ii) A Sylow *r*-subgroup of G has exponent r.

Some open problems

- Marušič's conjecture on vertex-transitive graphs (and more general, the polycirculant conjecture).
- Isbell's conjecture: There is a function f_p such that if $n = p^a b$ with gcd(b, p) = 1 and $a > f_p(b)$, then any transitive group of degree n contains a derangement of p-power order.
- (J.G. Thompson) If G is primitive group, then Δ(G) is a transitive subset of G. (There is a reduction to almost simple groups).