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Abstract

We introduce background material from Finite Groups and Represen-
tation Theory of Finite Groups (Linear and Permutation Representations).
We introduce the reader to combinatorial structures such as Designs and
Linear Codes and will discuss some of their properties, we also give few ex-
amples. We aim to introduce two new methods for constructing codes and
designs from finite groups (mostly simple finite groups). We outline some
of recent collaborative work by the author with J D Key, B Rorigues and T
Le.
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1 Introduction

Error-correcting codes that have large automorphism groups are useful in appli-
cations as the group can help in determining the code’s properties, and can be
useful in decoding algorithms: see Huffman [15].

In a series of 3 lectures given at the NATO Advanced Study Institute ”Infor-
mation Security and Related Combinatorics” held in Croatia [28], we discussed
two methods for constructing codes and designs for finite groups (mostly simple
finite groups). The first method dealt with construction of symmetric 1-designs
and binary codes obtained from from the action on the maximal subgroups, of a
finite group G. This method has been applied to several sporadic simple groups,
for example in [18], [22], [23], [31], [32], [33] and [34]. The second method intro-
duces a technique from which a large number of non-symmetric 1-designs could
be constructed. Let G be a finite group, M be a maximal subgroup of G and
C, = [g] = nX be the conjugacy class of G containing g. We construct 1— (v, k, \)
designs D = (P, B), where P = nX and B = {(M NnX)Y|y € G}. The param-
eters v, k, A and further properties of D are determined. We also study codes
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associated with these designs. In Subsections 5.1, 5.2 and 5.3 we apply the second
method to the groups A7, PSLy(q) and J; respectively.

Our notation will be standard, and it is as in [2] for designs and codes. For
groups we use ATLLAS [5]. For the structure of finite simple groups and their
maximal subgroups we follow the ATILAS notation. The groups G.H, G : H,
and G"H denote a general extension, a split extension and a non-split extension
respectively. For a prime p, p™ denotes the elementary abelian group of order p”.
If G is a group and M is a G-module, the socle of M, written Soc(M), is the
largest semi-simple G-submodule of M. It is the direct sum of all the irreducible
G-submodules of M. Determination of Soc(V') for each of the relevant full-space
G-modules V = F™ is highly desirable.

2 Permutation Groups

2.1 Permutation Representations

Theorem 2.1 (Cayley) Every group G is isomorphic to a subgroup of Sg. In
particular if |G| = n, then G is isomorphic to a subgroup of S,,.

Proof: For each z € G, define T, : G — G by T,,(g) = xg. Then T, is one-to-one
and onto; so that T, € Sg. Now if we define 7 : G — S¢g by 7(x) = T, then 7
is a monomorphism. Hence G = I'mage(r) < S¢. B

Definition 2.1 The homomorphism 7T defined in Theorem 2.1 is called the left
regular representation of G.

Note: Cayley’s Theorem is not that useful when the group G is large or when G
is simple. Following results (Theorem 2.3 and Corollary 2.4 ) provide substantial
improvement over Cayley’s Theorem. Notice that A5 < S5 and Cayley’s Theorem
asserts that As is also a subgroup of Sgo.

Corollary 2.2 Let GL(n,F) denote the general linear group over a field F. If
G is a finite group of order n, then G can be embedded in GL(n,T), that is G is
isomorphic to a subgroup of GL(n,F).

Proof: Let T, be as in Cayley’s Theorem. Assume that G = {g1, g2, -+, gn}-
Let P, = (ai;) denote the n x n matrix given by a;; = 1 if T;(g;) = g; and a;; =
Op, otherwise. Then P, is a permutation matrix, that is a matrix obtained
from the identity matrix by permuting its columns. Define p : G — GL(n,F) by
p(x) = Py, then it is not difficult to check that p is a monomorphism. W

Note: If P,, denotes the set of all n x n permutation matrices, then P, is a group
under the multiplication of matrices and P, = S,.

Example 2.1 Counsider the Klein four group V; = {e, a, b, ¢, }. Then we have
Ta(e) =a.e =a, Ty(a) =a® =e, T,(b) =ab=c, T,(c) = ac="b;

Ty(e) = b, Ty(a) = ¢, Tp(b) = e, Tp(c) = a;
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Hence the permutation matrices are

0100 00 1 0 00 0
1 0 0 0 000 1 0 0 1
Pe=lu Fa=1 10001 =1 1000 =010
0010 0100 100

So that V3 = {I,, P, P,, P.} < GL(4,F)

Exercise 2.1 (i) Show that for n > 2, .S, is isomorphic to a subgroup of A, ;2.
(ii) Use part (i) to show that A, contains an isomorphic copy of every finite
group. (See below for the definition of A..)

Definition 2.2 Let X = N and let F' be the set of all « € Sx such that o moves
finitely many elements of X. Then F < Sx. Let Ay denote the subgroup of F
generated by all 3-cyles of F. It can be shown that A is a simple group.

Theorem 2.3 (Generalized Cayley Theorem) Let H be a sugroup of G and
let X be the set of all left cosets of H in G. Then there is a homomorphism
p: G — Sx such that
Ker(p)= () gHg™".
g€G

Proof: For any z € G, define p, : X — X by p.(9H) = z(gH). Then p, is
well-defined, one-to-one and onto. So that p, € Sx. Now define p: G — Sx by
p(x) = p, for all z € G. Then p is a homomorphism. We claim that Ker(p) =
Nyec 9Hg ™.

Let z € Ker(p). Then p, = p(x) is the identity permutation on X. Hence
pz(gH) = gH for all g € G. So that xgH = gH, Yg € G. So g 'zg € H, Vg € G.
This implies that € gHg™!, Vg € G. Thus Ker(p) C ﬂgGGgHg_l. Now if
T € ﬂgeGgHgfl, then z € gHg™',¥g € G. So that xzgH = gH for all g € G, that
is p, is the identity permutation. Hence z € Ker(p), so (1 cq gHg™! C Ker(p).
|

Definition 2.3 The homomorphism p defined above (Theorem 2.3) is called the
permutation representation of G on the left cosets of H in G. The kernel of
p, Ker(p) = ngG gHg™ !, is called the core of H in G.

Exercise 2.2 If p is the permutation representation of G on the left cosets of H
in G, then show that

(i) Ker(p) <H, (ii) G/Ker(p) isisomorphic to a subgroup of Sx, where
X =G/H ={gH | g € G}.

Corollary 2.4 If G is an infinite group such that contains a proper subgroup of
finite index, then G contains a proper normal subgroup of finite indez.

Proof: Let H < G such that [G : H| = n. Let X = G/H be the set of all left
cosets of H in G. Then |X| = n and there is a homomorphism p : G — S,
such that Ker(p) = cq gHg™ . Since G/Ker(p) is isomorphic to a subgroup
of Sy, G/Ker(p) is finite. Obviously Ker(p) < G, and since Ker(p) < H < G,
Ker(p) # G. Note that Ker(p) # {1¢}. R

S o o
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Corollary 2.5 If G is a simple group containing a proper subgroup H of finite
index n, then G is isomorphic to a subgroup of S,.

Proof: By Theorem 2.3, there exists a homomorphism p : G — S;, such that
Ker(p) = Nyea gHg™! and Ker(p) < H. Since Ker(p) < G and G is simple,
Ker(p) = G or Ker(p) = {lg}. Since H < G and Ker(p) < H, Ker(p) # G.
Thus Ker(p) = {1g}. Hence p is a monomorphism; so that G = I'mage(p) < S,,.
[ |

Exercise 2.3 Prove that if A and p are left and right regular representations of
G, then A(a) commutes with p(b) for all a,b € G.

Exercise 2.4 (i)* Let G be a group of order 2™k, where k is odd. Prove that if
G contains an element of order 2™, then the set of all elements of odd order in G
is a normal subgroup. (Hint: Consider G as permutations via Cayley’s Theorem,
and show that it contains an odd permutation).

(ii) Show that a finite simple group of even order must have order divisible by
4.

Exercise 2.5 (Poincare) If H and K are subgroups of G having finite index, then
H N K has finite index. (Hint: [G: HN K] < [G: H|[G : K].)

Exercise 2.6 Let G be a finite group and H < G with [G : H| = p, where p is
the smallest prime divisor of |G|. Prove that H is normal in G.

Exercise 2.7 Prove that Ag has no subgroup of prime index.

Definition 2.4 (Conjugate subgroups) Let G be a group and H < G we de-
fine HI by
HY: =gHg ' ={ghg™* | h € H}.

Then HY is called the conjugate of H by g. It is routine to check that H9 <
G, Vg € G.

Definition 2.5 (Normalizer) If H < G, the normalizer of H in G, denoted
by Ng(H), is defined by

Ne(H): ={g|g€G, gHg ' = H}.
If H <G, then Ng(H) = G.

Exercise 2.8 (i) Show that G > Ng(H)> H. (i) If H < K, where H and K
are subgroups of G, then Ng(H) > K.

Theorem 2.6 Let G be a group and H < G. Let X = {gHg™' | g € G}. Then
there exists a homomorphism ¢ : G — Sx such that Ker(¢) = (,eq 9Na(H)g™".

Proof: Define ¢, : X — X by ¢,(¢’Hg' ') = g(¢’Hg'~')g~!. Then ¢, is well-
defined and ¢, € Sx. Now define ¢ : G — Sx by ¢(9) = ¢4. Then ¢ is a
homomorphism: Va, g € G we have ¢(ab) = ¢qp and

bar(gHg™") = ab(gHg b ta™ = a(bgHg b Va™ = a(dp(gHg™"))a™*
ba(dp(gHg™ ")) = (da o ¢p)(9Hg ™),
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hence ¢up = ¢q © ¢ on X and ¢ is a homomorphism.

If g € Ker(¢), then ¢(g) = ¢4 is the identity permutation on X. So V¢’ €
G we have ¢,(¢’Hg'™1) = ¢g’'Hg'~'. Therefore g(¢’Hg'"')g~' = ¢'Hg'™'; so
9'"'9g'Hg' 'g~'g’ = H, that is g 'gg'H(g' 'gg')~" = H. Hence g'"'gg’' €
Ng(H) and we deduce that g € ¢'Ng(H)g'™!, V¢’ € G. This shows that
Ker(¢) € Nyeq9-Na(H)g™ " (1)

If a € Nyeq9NG(H)g™", then a € gNg(H)g™" for all g € G. Thus there is
g’ € Ng(H) such that a = gg'g~!. Now we have, for all g € G,

¢a(gHg™") = agHg 'a ™' =gg'g 'gHg g9’ g7
= gg'Hg' ‘¢! =gHg ",

since g’ € Ng(H). This shows that ¢, is the identity on X. Thus a € Ker(¢) and
hence Ker(¢) 2 N,eq9Na(H)g™'. (2) Now from (1) and (2) we obtain that
Ker(¢) = ﬂgEG gNcg(H)g~1. m
Note: The homomorphism ¢ given in Theorem 2.6, is called the permutation
representation of G' on the conjugates of H.

Exercise 2.9 Prove that a subgroup H of G is normal if and only if it has only
one conjugate in G.

Exercise 2.10 If H and K are conjugate subgroups of G, then H = K. Give an
example to show that the converse may be false.

Exercise 2.11 if A and p are left and right regular representations of Ss, show
that A(S3) and p(S3) are conjugate subgroups of S.

Exercise 2.12 Let G be a finite group with proper subgroup H. Prove that G
is not the set-theoretic union of all conjugates of H. Give an example in which
H is not normal and this union is a subgroup.

Exercise 2.13 (i) Assume H < K < G. Show that Ng(H) = Ng(H)N K.
(ii) Prove that Ng(xHX 1) = Ng(H)z ™.

Exercise 2.14 If H and K are subgroups of G, show that Ng(HNK) > Ng(H)N
N¢(K). Give an example in which the inclusion is proper.

Exercise 2.15 * Let G be an infinite group containing an element x # 1 having
only finitely many conjugates. Prove that G is not simple.

3 Permutation Groups

Definition 3.1 Let G be a group and X be a set. We say that G acts on X if
there exists a homomorphism p : G — Sx. Then p(g) € Sx for all g € G. The
action of p(g) on X, that is p(g)(x), is denoted by x9 for any x € X. We say that
G is a permutation group on X.
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Example 3.1 (i) If G < Sx, then obviously G acts on X naturally.

(ii) By Cayley’s theorem any group G acts on itself and the action is given by
a¥ = ga, Ya € G, for g € G.

(iii) If H < G, then G acts on G/H, the set of all left cosets of H in G. The
action is given by: for g € G, (aH)9 = gaH, Ya € G.

(iv) If H < G, then G acts on the set of all conjugates of H in G by

(aHa™1)9 = g(aHa Y)g~! = gaHa tg~ 1.

Definition 3.2 (Orbits) Let G act on a set X and let x € X. Then the orbit
of x under the action G is defined by

29 ={29 ] g€ G}

Theorem 3.1 Let G act on a set X. The set of all orbits of G on X form a
partition of X.

Proof: Define the relation ~ on X by = ~ y if and only if z = y9 for some g € G.
Then ~ is an equivalence relation on X (check) and [z] = {29 | g € G} = 2©.
Hence the set of all orbits of G on X partitions X. B

Example 3.2 (i) If G acts on itself by the left regular representation, then Vg € G
we have ¢¢ = {¢" | h € G} = {hg | h € G} = Gg = G. Hence under the action of
G, we have only one orbit, namely G itself.

(ii) If G acts on G/H, the set of left cosets of H in G, then VaH € G/H we
have

(aH)® = {(aH)? | g € G} = {gall | g € G} = G/H.

In this case we have only one orbit, namely G/H.
(iii) In the case when G acts on itself by conjugation, that is for g € G we
have Vx € G 29 : = gxg~ ', then

2¢ ={29]g€ G} ={grg ' | g€ G} =]

the conjugacy class of x in G. Note that |2%| = |[z]| = [G : Cg(z)]. In this case
the number of orbits is equal to the number of conjugacy classes of G.

(iv) If G acts on the set of all its subgroups by conjugation, that is HY9 =
gHg™', Vg € G, VH < G, then for a fixed H in G we have

HE ={H|geG}={gHg ' |gc G}

the set of all conjugates of H in G. Later we will prove that the number of
conjugates of H in G is equal to [G : Ng(H)]. Hence |[HY| = [G : Ng(H)]. In
this case the number of orbits of GG is equal to the number of conjugacy classes of
subgroups of G.

Definition 3.3 (Stabilizer) If G acts on a set X and x € X then the stabilizer
of x in G, denoted by G, is the set G, = {g | 9 = x}. That is G, is the set of
elements of G that fixes x.
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Theorem 3.2 Let G act on a set X. Then

(i) G, is a subgroup of G for each x € X.

(i3) |v%| = [G : G, that is the number of elements in the orbit of = is equal to
the index of G, in G.

Proof: (i) Since z'¢ = z, 1¢ € G,. Hence G, # . Let g, h be two elements

of G,. Then 29 = 2" = z. So (z9)" " = (2" = 2'¢ = 2, and therefore
29" =z, Vo € X. Thus gh~! € G,.
(ii) Since

-1
2 =z" o r=2" s hgled,

< (Gw)g = (Ga:)ha

the map v : 2% — G/G,, given by v(z9) = (G,)g is well-defined and one-to-one.
Obviously v is onto. Hence there is a one-to-one correspondence between ¢ and
G/G. Thus |29 = |G/G,|. B

Exercise 3.1 Let G act on a set X. If y = z9 for some x,y € X, show that
97 1Grg = Gpo = Gy

Corollary 3.3 If G is a finite group acting on a finite set X then Va € X, |z
divides |G|.

Proof: By Theorem 3.2 we have |z%| = [G : G,] = |G|/|Gx|. Hence |G| =
|2%| x |G| Thus |2¢]| divides |G|.1

Theorem 3.4 (Applications of Theorem 3.2) (i) If G is a finite group, then
Vg € G the number of conjugates of g in G is equal to [G:Cg(g)].

(i) If G is a finite group and H is a subgroup of G, then the number of
conjugates of H in G is equal to [G:Ng(H)].

Proof: (i) Since G acts on itself by conjugation, using Theorem 3.2 we have
l9%| = [G:G]. But since
99 ={g" |he Gy ={hgh™' | he G} =g]
and
Gy={heG|g"=gy={heG|hgh™" =g} = {he€ G| hg=gh}=Cclg),
we have
_ @
[Calg)
(ii) Let G act on the set of all its subgroups by conjugation. Then by Theorem
3.2 we have |HY| = [G:Gg]. Since HY = {HY | g € G} = {gHg™ ' | g € G} = [H]
and Gy = {g € G| HY9 = H} = {g € G | gHg ! = H} = Ng(H) we have

[H]| = |HC| = [G:Gr] = [G:Ng(H)] = % ™

191 = [lg]| = [G:G{] = [G:Ca(9)]

Theorem 3.5 (Cauchy - Frobenius ) Let G be a finite group acting on a finite
set X. Let n denote the number of orbits of G on X. Let F(g) denote the number
of elements of X fized by g € G. Then n = ﬁ > e F(9).
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Proof: Consider S =3 . F(g). Let « € X. Since there are |G;| elements in
G that fix x, z is counted |G| times in S. If A = 2%, then Vy € A we have
Al = [2¢] = |[y°] = [G:G.] = [G:G,]. Hence |G| = |G,|. Thus A contributes
[G:G4].|Gz]| to the sum S. But [G:G,].|G,| = |G| is independent to the choice of
A and hence each orbit of G on X contributes |G| to the sum S. Since we have n
orbits, we have S =n|G|. B

Definition 3.4 (Transitive Groups) Let G be a group acting on a set X. If G
has only one orbit on X, then we say that G is transitive on X, otherwise we
say that G is intransitive on X. If G is transitive on X, then ¢ = XV z € X.
This means that Vx, y € X, 39 € G such that x9 = y.

Note: If G is a finite transitive group acting on a finite set X, then Theorem 3.2
(ii) implies that |2¢| = | X| = |G|/|Gy|. Hence |G| = |X| x |G4|.

Definition 3.5 (Multiply Transitive Groups) Let G act on a set X and let
|X|=n and 1 < k < n be a positive integer. We say that G is k - transitive on
X if for every two ordered k - tuples (x1,xa, - ,xk) and (y1,y2, -+ ,Yr) with z; #
x; and y; # y; for i # j there exists g € G such that x;9 = y; fori=1,2,--- k.
The transitivity introduced in Definition 3.4 is the same as 1 - transitive.

Exercise 3.2 Let G be a group acting on a set X. Assume that | X| = n. Let
1 < k < n be a positive integer.

(i) Show that if G is k - transitive, then G is also (k — 1) transitive, when
k> 1.

(ii) If 3H < G such that H is k - transitive on X, then G is also k - transitive.

Exercise 3.3 Let G be a transitive group on a set X, |X| = k > 2. Show that
G is k - transitive on X if and only if G, is (k — 1) - transitive on X — {z}, for
every x € X.

Theorem 3.6 If G is a k - transitive group on a set X with | X| = n, then
IGl=nn—1)(n—2) - (n—k+1)|Gluy s 2]l

for every choice of k- distinct x1,xa,- -+, € X, where Gz, 4,.... «,) denote the
set of all elements g in G such that ;9 =x;, 1<1i<k.

Proof: Let x; € X. Then since G is k - transitive, we have |G| = n x |G,,| (1)
and G, is (k—1) - transitive, by Exercise 3.3, on X —{x;}. Choose x5 € X —{z1}.
Then since G, is (k — 1) - transitive on X — {x1} we have |Gy, | = | X — {x1}]| x
|(Gzy)asl, that is [Go | = (0 — 1) X |G, 2,)| and G[a, 4,) is (k — 2) - transitive on
X —{z1,22}. (2) Notice that (1) and (2) imply that |G| = n(n — 1) X |G[4, .-
If we continue this way, we will get

Gl =n(n = 1) =2)- (1= k+ V|Gl |
|

Theorem 3.7 Let G act transitively on a finite set X with |X| > 1. Then there
exists g € G such that g has no fized points.
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Proof: By the Cauchy - Frobenius theorem we have

1
l=n = @ZF(g)

geG

- émlm S F(g)
geG—{1g}
1
- GlX+ X Fa)l

geG—{lg}

If F(g) > 0 for all g € G, then we have

1 1
1= @HX\ + > Flg) = @[IXl + |G| —1]
geG—{lg}

X| -1
1+| |

> > 1,
Gl

which is a contradiction. Hence 3 g € G such that F'(g) =0. B

Exercise 3.4 Let G be a group of permutations on a set X and let x,y € X. If
x' = y for some t € G, prove that G, = G,. (Hint: Use Exercise 3.1.)

Exercise 3.5 Use Cauchy - Frobenius to prove Lagrange’s Theorem. (Hint: Con-
sider the left - regular action of G.)

Exercise 3.6 If GG is a finite group and c is the number of conjugacy classes of
elements of G, show that ¢ = |T1:\ > wec |Ca(x)|. (Hint: Consider the conjugation

action of G on its elements and use Cauchy - Frobenius Theorem).

Exercise 3.7 Let G be a finite group of order p™, where p is a prime. Assume
that G acts on a set X with p not dividing | X|. Prove that there exists x € X
such that 29 = z for all g € G. [Hint: use Corollary 3.3.]

Exercise 3.8 Assume that V ia vector space of dimension n over Z,, and GL(n, p)
is the corresponding general linear group acting on V. If G is a subgroup of
GL(n,p) with |G| = p™, prove that there exists a non-zero vector v € V such
that gv = v for all g € G. [Hint: since G < GL(n,p), G acts on V]

4 Representation Theory of Finite Groups

4.1 Basic Concepts

Definition 4.1 Let G be a group. Let f : G — GL(n,F) be a homomorphism.
Then we say that f is a Matrix Representation of G of degree n (or dimension
n), over the field F.

If Ker(f) = {1g}, then we say that f is a faithful representation of G. In this
situation G = I'mage(f); so that G is isomorphic to a subgroup of GL(n,F).
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Example 4.1 (i) The map f: G — GL(1,F) given by f(g9) = 1y for all g € G
is called the trivial representation of G over F. Notice that GL(1,F) = F*.

(ii) Let G be a permutation group acting on a finite set X, where X =
{z1,29,--- ,xzn}. Define 7 : G — GL(n,F) by n(g) = m, for all g € G, where 7,4
is the permutation matrix induced by g on X. That is 7y = (a;;) an n X n
matrix having ¢ and ¥ as entries in such way that

ai; = 1]}: if g(l‘z) =Ty
= Op otherwise.

Then 7 is a representation of G over F, and 7 is called the permutation repre-
sentation of G on X.

(iii) Take X = G in part (i¢). Define a permutation action on G by g : * — xg
for all x € G. Then the associated representation 7 is called the right regular
representation of G.

Exercise 4.1 Let N < G. Assume that 7 is a representation of G/N. Define
p: G — GL(n,F), where n is the degree of p, by p(g) = p(¢gN). Then show that
p is a representation of G.

Exercise 4.2 Let N < G. Assume that p is a representation of degree n on G.
If N < Ker(p), then show that the mapping p : G/N — GL(n,F) given by
p(gN) = p(g) is a representation of G/N.

Theorem 4.1 Let G be a group. Then the derived subgroup G’ lies in the kernel
of any representation of G of degree 1.

Proof: Assume that f: G — GL(1,F) is a representation of degree one of G.
Let a,b € G. Then

flaba™'b™") = f(a)f(B)[f (@) [F()] "
Since GL(1,F) = F* is abelian we have
flaba™'b™1) = f(a)[f(a)] " FOF(B)) 7 = b

Thus [a,b] = aba=1b~! € Kerf. Since G’ is generated by the set of all commuta-
tors, G' C Ker(f). B

Exercise 4.3 Let F = GF(q) be the Galois Field of ¢ elements, where ¢ = p*
for some prime p. Show that |GL(n,F)| = (¢" — 1).(¢" —q)--- (¢" — ¢"1).

Definition 4.2 (Special Linear Group SL(n,F)) Let F be any field.
SL(n,F)={A| A€ GL(n,F), det(A) = k}.
Then it is not difficult to show that SL(n,F) < GL(n,TF).
Theorem 4.2 Let F = GF(q) with ¢ = p* for some prime p. Then
SL(n,F) AGL(n,F)

and
|SL(n,F)| = |GL(n,F)|/(q - 1).
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Proof: Let p : GL(n,F) — F* be given by p(A) = det(A), for all A € GL(n,TF).
Then p is a homomorphism (check ). If @ € F*, then

al0 0 -~ 0
0[1 0 -~ 0

po | 0101 0 g
0(0 0 1

so that p is onto. We also have Ker(p) = {A | A € GL(n,F), det(A) = t} =
SL(n,F). Since Ker(p)IGL(n,F), SL(n,F)JIGL(n,F). Now since GL(n,F)/Ker(p) =
Image(p), we have that GL(n,F)/SL(n,F) = F*. Hence

|GL(n,F)/SL(n,F)| = |F*|=q— 1.
|
Corollary 4.3 If p : G — GL(n,F) is a representation of G, then p(g) €
SL(n,F) for all g € G'.
Proof: Let h = [a,b] be a commutator in G. Then we have p(h) = p(aba=1b71) =
p(a)p(b)p(a=1)p(b~1). Now since

det(p(h)) = det(p(a)).det(p(b)).det(p(a™V))det(p(b~))

= det(p(aa™")).det(p(bb~"))

= det(p(lg)).det(p(1c))

= det(I,).det(I,) =1,
we have p(h) € SL(n,F). &

Exercise 4.4 (Special triangular Group) Let STL(N,F) denote the set of
all invertible lower triangular n X n matrices whose diagonal entries are all .
Then STL(n,F) < GL(n,F). Show that if F = GF(q) where ¢ = p* for some
prime p, then STL(n,F) is Sylow p-subgroup of GL(n,T).

Definition 4.3 (Characters) Let f : G — GL(n,F) be a representation of G
over the field F. The function x : G — T defined by x(g) = tr(f(g)) is called the
character of f.

Definition 4.4 (Class functions) If ¢ : G — F is a function that is constant
on conjugacy classes of G, that is ¢(g) = ¢(xgx~'),Va € G, then we say that ¢
is a class function.

Lemma 4.4 A character is a class function.

Proof: Let x be a character of G. Then Y is afforded by a representation p : G —
GL(n,F). Let g € G; then Vz € G we have

X(zga™h) = tr(p(zgz™"))
= tr(p(z)-p(g)-p(z~"))
= tr(p(x).p(g)-lp(x)] ™)
= tr(p(g)), see Note 5.1.1 below

= x(9)
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|
Note: Similar matrices have the same trace. If A = (a;;) and B = (b;;) are two
matrices, then

n n

tT(AB) = Z(Z aijbji) = Z(Z bjiaij) = tT(BA).

i=1 j=1 j=1 i=1

Now if B= PAP™L, then tr(B) = tr(PAP™!) = tr(P~1PA) = tr(A). Note: If
X s a character afforded by a representation p : G — GL(n,F), then x is not
linear (in general) :

x(99") = tr(p(gg’)) = tr(p(g)p(g")) # tr(p(g)) x tr(p(g')) = x(g) x x(g")
Later we will show that x is linear if and only if deg(p) = 1.

Definition 4.5 (Equivalent Representations) Two representations
0,9 : G — GL(n,F) are said to be equivalent if there exists a n x n matriz P
over F such that P~ 1p(g)P = ¢(g), Vg € G.

Since similar matrices have the same trace, it follows that equivalent representa-
tions have the same character.

Theorem 4.5 FEquivalent representations have the same character.

Proof: Let x; and y2 be characters afforded by p; and ps two representations of
degree n over a field F. Assume that p; is equivalent to po. Then there is an x n
matrix P such that P=1p;(g)P = p2(g), Vg € G. Now Vg € G we have

x2(9) = tr(p2(g)) = tr(P~"p1(g)P) = tr(p1(9)) = x1(9)-

Hence x1 = x2. 1

Definition 4.6 Let S be a set of (n x n) matrices over F. We say that S is
reducible if 3 m,k € N, and there exists P € GL(n,F) such that VA € S we

have
(B 0
PAP _<CD

where B is an m x m matriz, D and C are k X k and k x m matrices respectively.
Here 0 denotes the m x k zero matriz.

If there is no such P, we say that S is irreducible.

If C = 0, the zero k x m matrix, for all A € S, then we say that S is fully
reducible.

We say that S is completely reducible if 3 P € GL(n,F) such that

BL O - -0
papt=| 0 B2 00 ey

o 0 - - B

where each B; is irreducible.
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Example 4.2 Let F = C; consider

s:{(fg ‘2) Ia,be(C}.

Then S is a reducible set over C. Let P = ( (1) _12 ) . Then P~1 = ( (1) ; )

-1 a —b . a—+ ib 0
P (b a)P-( boa—ib , Ya,b e C.
In fact we can show that S is fully reducible. For this let P = i 1Z . Then

1 — a —b a—1b 0
-1 _1 -1 _
Pt ) e (5 )= (70 L)

11
0 1

and

Exercise 4.5 Let S = { ( > } . Show that S is reducible, but it is not fully

reducible.

Definition 4.7 Let f : G — GL(n,F) be a representation of G over F. Let
S=Im(f)={f(9)| g€ G}. Then S C GL(n,F). We say that f is reducible,
fully reducible, or completely reducible if S is reducible, fully reducible or
completely reducible.

Definition 4.8 (Sum of representations) letp: G — GL(n,F) and ¢ : G —
GL(m,F) be two representations of G over F. Define
p+¢:G— GL(n+m,F) by

o+ ala) = (79 Pen ) = ptg) @ 000),

for all g € G. Then p+ ¢ is a representation of G over F, of degree n + m.

If x1 and x5 are the characters of p and ¢ respectively, and if x is the character
of p+ ¢, then Vg € G we have

o) = trace () 8 ) = 0r(p(a) +1r(0(0) = 1(0) + xal) = (a + x2)(a)

Hence x = x1 + x2-
Example 4.3 Let G =< a,b > such that a®> = b> = 1g and ab = ba. Define
f:G — GL(2,C) by f(a) = ((1) ?),f(b): ( ) ?).Thenfisa

faithful representation of degree 2. It is not difficult to see that f is completely
reducible

Exercise 4.6 Represent the permutations of S3 as permutation matrices. Cal-
culate the character of this representation.
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Theorem 4.6 (Maschke’s theorem) Let G be a finite group. Let f be a rep-
resentation of G over a filed F whose characteristic is either 0 or is a prime that

does not divide |G|. If f is reducible, then f is fully reducible.

Proof: In fact we will show that if there is a matrix P such that Vg € G

_ _( Alg) 0
PT(9)P = ( B(g) C(g) >

then there is a matrix @) such that
_ A 0
Vg e G,Q 1f(g)Q = ( (go) C(9) > .

Let f(g) = P~1f(g)P and let L = ( ‘;C IO

A(g) and C(g) respectively, and T is an s x r matrix. We need to determine T'
such that L is an invertible matrix over F independent of g and

> where 7 and s are the degrees of

o _ (Al 0
L ﬂmL—< 9 aw>,W€G~ﬂ)

Then Q = PL. Relation (1) implies that

(égg; 0(9(3)(2; IS):<IIC IS)<A(9()) 0(9?)’

Hence we find that
B(g)+C(g)T =T.A(g), Vg e G. (2).

Since f is a matrix representation of G, f(gh) = f(g).f(h) for all g,h € G. So
for all g and h in G we have

<§$36@£>=(§% mﬁ)(gg a5>’

that is

< A(gh) 0 > _ < A(g)A(h) 0 >
B(gh) C(gh) B(g)A(h) + C(g)B(h) C(9)C(h) )°
We obtain the relations:

(i) A(gh) = A(g)A(h)

(ii) C(gh) = C(9)C(h)

(iii) B(gh) = B(g)A(h) + C(g)B(h).
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Relations (i) and (ii) show that A and C are matrix representations of G over
F. By multiplying (iii) and A(h~!) we obtain that
B(gh)A(h™) = B(g) + C(9) BNA(™Y) Vg, h e G (3)

If we fix g and let h runs over all elements of G, then using (3) we get

> B(gh)A =Y _Blg)+ > _ Clg)Bh)AMR™)
heG heG heG
= |G|B(g (9) > B(h (4)
heG

Now let © = gh. Since h runs over all elements of GG, so also does x. Hence

> B(gh)A =Y B@)A(z"'g) = ) Blx)A(z"")A(g)
heG zeG zeG
= (> B(@)A(z"")A(g). (5)
zeG

Now relations (4) and (5) give
(Y Bx)A(@™"))Alg) = |GIB(9) + Cl9)(D_ B(h) (6)
zeG heG

Since the characteristic of F does not divide |G|, |G| # @ in F. Hence we can
divide both sides of relation (6) by |G|. We get

|G| > Bl) )A(g )=B(9)+C(9)(ﬁZB(h)A(h_l))~ (7)
zEG heG
Finally by comparing relations (7) and (2), if we let
() Bla
|G‘ zeG
then T satisfies the relation (2). B

Theorem 4.7 [The general form of Maschke’s theorem] Let G be a finite group
and F a field whose characteristic is either 0 or is a prime that does not divide
|G|. Then every representation of G over F is completely reducible.

Proof: Let f be a representation of G over F. If f is irreducible, then it is
completely reducible. Hence assume that f is reducible. Then by Maschke’s
theorem f is fully reducible, and therefore for all g € G, f(g) is similar to

( A(g& C(g? )
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Since A and B are representations of G over F', we can apply Maschke’s
theorem to these representations. Repeating this process we obtain that f(g) is
similar to

Bi(g) 0 - -0
0 By(g) 0 - 0
0 0 - - Blg)

where B;,1 < i < k are all irreducible representations of G over F.

Theorem 4.8 [Schur’s Lemma] Let p and ¢ be two irreducible representations,
of degree n. and m respectively, of a group G over a field F. Assume that there
exists an m x n matriz P such that Pp(g) = ¢(g)P for all g € G. Then either
P = O,xn or P is non-singular so that p(g) = P~1¢(g)P (that is p and ¢ are
equivalent representations of G).

Proof: Let r = rank(P). Then there are non-singular matrices L and M such
that P = LE,. M, where

0y Om—rxcn—
ET — < m—rXr m—rXxXn—r ) ,
I’I" OT‘X’I'L—T’ mxn
and L and M are m x m and n X n matrices respectively. Since for all g € G we
have Pp(g) = ¢(g)P, we obtain that

LE,Mp(g) = ¢(g9)LE,M.

Hence
E.Mp(g)M~" = L™ '¢(9)LE,. (1)

Using the relation (1), we can partition the matrices M p(g)M~! and L=1¢(g)L
in the following way, provided that r # 0, and m # r or n # r:

1 ( Alg) B(g)
Mp(g)M ™" = ( C(f]) D(‘!g]) )nxn’

" Alg) B9
B
L—l L= g g > ,
o(g) ( C'(9) D'(g) .
where A(g) is r xr, B(g) isrxn—r, C(g)isn—rxr, D(g)isn—rxn—r,

Ag)ism—rxm—r, B(g)ism—rxr, C'(g)isrxm—r, D'(g) isr x r. We
can easily deduce that

o = (57 )

and

. B B'(9) Om—rxn—r
L™ ¢(g)LE, = ( D'(g) Orxn—r ) .

Now using the relation (1) we must have

(™ B )= (ol o)
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Hence B'(g) = 0in—rxr and B(g) = 0pxm—r for all g € G. This shows that p and
¢ are reducible, which is a contradiction. Thus either r = 0 or m = n = r. If
r =0, then P = 0,,xp,. If m =n =r, then P is invertible and p(g) = P~1¢(g)P.
|

Definition 4.9 (Algebraically Closed Fields) . A field F' is said to be Al-
gebraically closed if every polynomial equation p(z) = 0 with P(x) € F[z] has
all its roots in F.

For example the complex field C is an algebraically closed field by the Fun-
damental Theorem of Algebra. The first proof for the fundamental theorem of
algebra was given by Gauss in his doctoral dissertation in 1799 at the age of 22
(in fact gauss gave several independent proofs, he published his last proof in 1849
at the age of 72).

For an algebraically closed field, the Schur’s Lemma (Theorem 4.8) has the
following noteworthy corollary.

Corollary 4.9 If p is an irreducible representation of degree n of a group G over
an algebraically closed field F', then the only matrices which commute with all
matrices p(g), g € G, are the scalar matrices al,,, a € F.

Proof: Let P be an n x n matrix such that Pp(g) = p(g)P, for all g € G. Then
for any a € I’ we have

(al, — P)p(g) = p(g)(al, — P), forall ge G (1)

Let m(z) = det(xI, — P) be the characteristic polynomial of P. Since m(x) is
a polynomial over F' and F' is algebraically closed, there is ag € F' such that
m(ag) = 0. Hence det(agl, — P) = 0. So that agl, — P is singular. Now using
relation (1) and Schur’s Lemma, we must have agl,, — P = 0. Thus P = agl,,. B

Exercise 4.7 Let G be a finite group and p and ¢ be representations of degrees n
and m respectively, over a a field F. Assume that char(F') does not divide the order
of G. Let S be an m x n matrix over F. Show that Sp(g) = ¢(g)S for all g in G if
and only if there is an m x n matrix 7" over I such that S =3} d(g~)Tp(g).

Exercise 4.8 Maschke’s Theorem becomes false if the hypothesis that char(F')
does not divide the order of G is omitted. Let FF = GF(2) and G =< a > be
acyclic group of order 2. Define p : G — GL(2,F) by p(lg) = Iz and p(a) =
( (1) 1 ) . Show that p is reducible but not fully reducible. (Hint use Exercise
5.1.5.)

Exercise 4.9 Show that Corollary 5.1.9 is false if F' = R.

Theorem 4.10 Let p and ¢ be two inequivalent irreducible representations, of
degrees n and m respectively, of a group G over a field F. If T is an m X n matriz
over F, then

> 6lg7)Tp(9) = O

geG
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Proof: Let S = dec #(g71)Tp(g). Then for any x € G we have

=Y 6lg7)Tplgr) =D d(@)p(x g )Tp(gx) =
9eG geqG
2)(Y_ o(gx) ) Tp(gr)) = ¢() (> o(z")Tp(2)) = ¢()S.
geG zeG

Since p and ¢ are inequivalent irreducible representations of G, by Schur’s
lemma we must have S = 0,,xn.
[ |

Definition 4.10 Let G be a finite group and F a field such that char(F) does
not divide the order of G. If p and ¢ are two functions from G into F, we define
an inner product <,> by the followmg rule:

< pp>= |G| > n(9)eg™h),
geG
where ﬁ stands for |G|~1 in F.
Theorem 4.11 The inner product <,> defined above is bilinear and symmetric:
(i) <p1+p2,0>=<p1,0 >+ < p2,¢ >,
(it) < p; 1+ 2 >=<p,p1 >+ < p, P2 >,
(iii) < ap,d >=a < p,¢ >=< p,ap >, for all a € F,
(iv) < p,d >=<,p>.

Proof: the bilinear properties (i), (ii) and (iii) are easy to verify. Let us prove
the the symmetry:

<p7¢>:%Zp(g)¢( % Z % Z¢ =<,p>.
Gl 7=, 1 |g€G ] | &2

|
Note: If p: G — F* is a group homomorphism, then

& 2Pl = 5 3 plle) = é‘ > 1r = fgx(GiLe) =

geG geG

<p,p>=

5 Characters of Finite Groups

In this section, unless explicit exception is made, the group G will be finite and
all representations and matrices will be over the complex field C.

Note: By the general form of Maschke’s theorem (Theorem 4.7), all represen-
tations of G are completely reducible.  Note: If If p : G — GL(n,C) is a
representation of G, then we denote the (i,j) entry of p(g) by pi;(g). Hence we
can regard p;; is a map from G into C.
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Theorem 5.1 [Orthogonality of irreducible representations] Let G be a finite
group and p and ¢ two irreducible representations of G.

(1) If p and ¢ are inequivalent, then < pys, ¢;; >=0, for all i, j, 7, s.
(i1) < prs, pij >= 0is0jr/deg(p).
Proof: (i) Using Theorem 5.1.10 we have
Z ¢(g_1)Eij(g) = Omxn, (1)
geG

where Ej;, is the m x n matrix with (j,r) entry 1 and other entries 0, with
n = deg(p) and m = deg(¢). Now from (1) we get

)
geG
Since the (4, s) entry of the left hand-side of the relation (2) is
‘G| Z ¢U prs ) =< ¢ijaprs >,
geG

we have < ¢;;, prs >=0.

(i) Let Sj = ﬁzgea p(9 ") Ejrp(g). Then for any z € G we have (see
Exercise 5.1.7) Sjyp(x) = p(x)S;r, and from Corollary 5.1.9 we deduce that S;,
is an scalar matrix. Hence let Sj, = Aj.I,,, where \j. € C. Then we have

AjrIn Z Ejrp(g).  (3)
|G| =
By comparing the (i, s) entry of the left and right hand-side of (3), we get
jT 7,5 = ‘Gl ZPZJ prs )
geG

That is
Ajrais =< Pij; Prs >
Since < pij, prs >=< Prs, Pij >, We get
)\jréis =< Pijs Prs >=< Prsy Pij >= )\si(ser (4)

Now if i # s or j # r, we have < p;j, prs >= 0 and (ii) holds. Suppose that
it =s and j = r. Then by (4) we have

< pijs Pji >= Ajj = i (5)

Hence we have
>\11:>\22:...:)\nn:)\€c,
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so that

n\ = Z)\“ = Z < pPi1, P1i >, by (5)7
i=1 i=1
Z Z (g™ le 9))
i=1 g€

= G 2 euta pale). ©

geG i=1

Since 37, pri(g~")pin(g) is the (1, 1) —entry of p(g~")p(g) and since p(g~")p(g) =
p(g719) = p(le) = I, we have

Zpu pin(g) = 1.

Now relation (6) implies that
1= x |G| = 1.
nA =G - Z x |G

Hence A = 1. Therefore by (5) we get

1
< pij, pji >= = 0udjz/deg(p).
|

Theorem 5.2 [Orthogonality of irreducible characters] Let G be a finite group
and p and ¢ two irreducible representations of G. If x, and x4 are characters of
p and ¢ respectively, then

(1) < XpsXo >=1if p and ¢ are equivalent, and
< Xp;s X¢ >= 0 otherwise,

(1) < Xp,Xp >= 1.
Proof: (i) Let n = deg(p) and m = deg($). Then we have

<Xpr Xo > = > xo@xelg™)
\G| =
= | Z{ an Z¢jj(g_l)]}
gEG i=1 i=1
= ZZ Zpu 615(97")]
i=1 j=1 g€G

= ZZ<P%,¢J‘J‘ >. (1)

i=1 j=1
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If p and ¢ are inequivalent, then < p;;, ¢;; >= 0 by part (ii) of Theorem 5.1,
Hence using the relation (1) above we get < x,, x¢ >=0.
If If p and ¢ are equivalent, then x, = x4 by Theorem 5.1.5. Now we have

<Xp: X¢p > = < Xp:Xp >
n n
i=1 j=1
n n 1
= Z < Piiy Pii >= Z —, by Theorem 5.2.1,
N c n
=1 =1
1
= nx—=1.
n

(ii) As above. B

Corollary 5.3 Two irreducible representations of a finite group G are equivalent
if and only if they have the same characters.

Proof: Let p and ¢ be two irreducible representations of G. If p and ¢ are
equivalent then x, = x¢ by Theorem 5.1.5. Conversely assume that x, = x¢.
Then by Theorem 5.2.2 (part (ii)) we have < x,,x¢ >= 1. Thus p and ¢ are
equivalent by Theorem 5.2.2. B

Note: Maschke’s theorem (Theorem 5.1.7) implies that if p is a representation
of G, then p is equivalent to Zle p; where p;, s are irreducible representations of

G. We also have x, = Zle Xpi -

Exercise 5.1 If p is a representation of G such that p is equivalent to Zle Di
where p;, s are irreducible representations of G, then p; are unique up to equiva-
lence.

Theorem 5.4 (Generalisation of Corollary 5.2.3) Two representations of a
finite group G are equivalent if and only if they have the same characters.

Proof: Let p and ¢ be two representations of G. If p and ¢ are equivalent then
Xp = X¢ by Theorem 5.1.5.

Conversely assume that x, = x4. Assume that an irreducible representation
1; appears m; times in p and n; times in ¢. Then adding dummy terms if
necessary, we have p ~ Zle mip; and ¢ ~ Zle n;Y;. Then x, = Zle ey
and xy = Zle T X, - Since x, = X¢, we have Ele M Xop; = Zle n; Xy, - Hence
for any j we have

k

<M Xy Xpy >=< Zmixlwawj >
i=1

m;

k

< Znixd,i,)(%. >=n;.
i=1

Thus Zf:l mi; = Zle n;. So p ~ ¢.
[ |
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Definition 5.1 (Irreducible Characters) If x, is a character afforded by a
representation p of G, then we say that x, is an irreducible character if p is
an irreducible representation. Notice that if x is an irreducible character of G
and if ¢ is a representation of G such that x4 = x, then ¢ is also irreducible by
Theorem 5.2.4.

Theorem 5.5 The set of all irreducible characters of G is a linearly independent
set over C.

Proof: Let x1,x2, -, xm be a finite set of distinct irreducible characters of a
finite group G. assume that there are A1, Ag,- - -, Ay, in C such that

Aix1 + dexe + -+ AXxm = 0, (1)

the zero function from G into C. Since x; # x; for ¢ # j, x; and x; are afforded
by inequivalent irreducible representations of G (by Theorem 5.2.4). Hence we
have < x;,x; >=1if i = j and 0 otherwise. Now using the relation (1) above we
get

m

<0, >=< Y _AiXi, Xj >
=1

o
I

m
=1

Therefore {x1, X2, -, Xm} is a linearly independent set over C. B

Theorem 5.6 If G has r distinct conjugacy classes of elements, then G has at
most r irreducible characters.

Proof: Let S = {[g1],[g2], - -, [gr]} De the set of all conjugacy classes of elements
of G and let V' be the vector space of functions from .S into C. Define f; : § — C,
for 1 <i<r, by fi(lg;]) =1 and f;([g;]) = 01if ¢ # j. Then {f1, f2,---, fr} isa
basis for V. Thus dim (V) = r.

Let Irr(G) denote the set of all distinct irreducible characters of G. Since
a character is a class function, we can regard Irr(G) as a subset of V. Now
since Irr(G) is a linearly independent subset of V' by Theorem 5.2.5, we have
|[Irr(G)| < dim(V), that is [Irr(G)| < r. R

Exercise 5.2 (i) If x = Zle AiXi, where x; are distinct irreducible characters
of G and \; are non-negative integers, show that < x,x >= 25:1 A2,

(ii) If x is a character of G, then show that x is irreducible if and only if
<x,x >=1.

Assume that {C1,Cy, -+, C,.} is the set of all conjugacy classes of elements of
G with C7 = 1g. Unless otherwise stated g; will denote an arbitrary element of
the conjugacy class C; and we put

hi = |Gi| = [G|/[Ca(g:)]-
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Let Irr(G) = {x1,Xx2," * -, Xk} be the set of all distinct irreducible charac-
ters of G with the assumption that y; is the character afforded by the trivial
representation p(g) = 1 for all g in G.

Theorem 5.7 We have the following
(i) Y gec x1(9) = |G,
(“) de(} Xl(g) = Ov ZfZ 7& 17

(iii) 3251 hixi(g;) = 0uil G-

Proof: (i) Since x1(g) =1 for all g in G, we have
Sl =S 1=1al
geG geG

(ii) If ¢ # 1, then < x;, x1 >= 0. hence

|G|Zx1 Mxilg™) |G‘Z><z

geG geG

Thus 3, cc xi(9) =0 % |G[ = 0.
(iii) If 4 = 1, then by part (i) we have > . x1(9) = |G| and hence

G| = Z xi(g9) = Zth1(gj)~

geG
If i # 1, then by part (ii) we have >° - xi(g9) = 0 = d1; and hence

0:611:2961' Z ]ngj

geG
|

Exercise 5.3 (i) Let p be an irreducible representation of G. Show that deg(p) =
1 if and only if ker(p) > G'.

(ii) Show that all irreducible representations of an abelian group are of degree
one.

Note: If x, and x4 are two characters of G, we know that
< Xp» Xop >= |G| > xo@)xelg™).
geG

Hence

<X Xo > = |G‘thXp 9:)Xe(9; ")
% —1
= Z@xp(gi)xqs(gi )

= Z|C jXe(90)xe(7 h.
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Example 5.1 Consider the symmetric group S3. Representing the elements of

S3 as permutation matrices, we obtain the following faithful representation 7 :
Sg — GL(?), (C)

1 00 010 1 00

rls)=( 0 1 0 |,7((12)=( 1 0 0 |,n((23)=[0 0 1 |,
00 1 00 1 010
001 010 00 1

r@3)=[0 10 |,723)=(0 0 1 |, 7(132)=|1 0 0
100 100 010

Then it is easy to see that

Xr(1s;) = 3,xx((12)) = xx((13)) = x=((23)) = 1, x«((123)) = xx((132)) = 0.

Notice that x(g) is equal to the number of fixed points of g on {1,2,3}.
Now

x> = (sl + 3l (12) + 2xe(123)) xe (132)]}

= L0109+ 30 + 20} = 12/6 =2

this shows that x, (and hence ) is not irreducible. Hence x» = x; + X;, where
X and x; are two distinct irreducible characters of Ss. (Note: If x is a character
of a group G such that < x,x >= 2, then there are x;,x; € Irr(G) such that

X = Xi + Xj, ¢ # j. Because if x = Zle AiX, then < x, x >= 2 implies

k k k
2=<y,x >=< Z)"X’ Z)\ix >= Z)\f
i=1 i=1 i=1

Hence there are ¢ # j for which A\; = A; = 1. So that x = x; + x;-)
Since
deg(xx) = 3 = Xx(ls;) = xi(ls;) + x;(Ls;),
W.L.O.G we may assume that deg(x;) = 1 and deg();) = 2. Let us now consider
the actions of x; (the trivial character) and x, on the conjugacy clases of Ss:

Ss Cy Oy Cs
Class Rep | 1s, (12) (123)
h; 1 3 2
Y1 T 1 1
Xr 3 1 0
Now
<XmX1> = %{1[XW(153)X1(153] + 3= ((12))x2((12))] + 2[x= ((123))x2 ((132))]}

1
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thus x1 appears only once in X, and hence x = x1 + x2 where x3 is a nontrivial
irreducible character of S3. Now we have

x2(9) = X»(9) —xa(9) = x=(9) — 1, forall g € S3.

So that we have

Xa(lsy) =3 =1 =2,x2((12)) = x2((13)) = x2((23)) =1 -1=0

and
x2((123)) = x2((132)) =0 — 1 = —1.

Since |Irr(S3)| < 3, We may have one more irreducible character [in fact later
we will show that for any finite group G, |Irr(S3)| = r, the number of conjugacy
classes if G.]. Define p : S3 — C by p(g) = 1 if g is even and p(g) = —1 if g is
odd. Then p is a representation of degree 1 with x, = p. Notice that xp # x1 and

Xp(Lsy) = X, ((132)) = x,((123)) =1
and
Xp((12)) = x,((13)) = x,((23)) = —1.
Since deg(x,) = 1, x, is irreducible (note that
<ot >= (1) + 311 + 2] = 1 +3+2) = 1)

This character is the third irreducible character of S3, namely x3. We are now
able to produce the following table for Ss, which is called the Character Table
of S3 over C.

Class Rep | 1g, (12) (123)
R 1 3 2
Y1 T 1 1
Yo 2 0 -1
X3 1 -1 1

Notice that
< X1, X2 >=< X1,X3 >=< X2,X3 >= 0;

Y xalg) = 1(1) +3(1) +2(1) = 6 = |S3;

geG
3" Xalg) = 1(2) +3(01) +2(~1) = 0;
geG
> xa(g) = 1(1) +3(=1) +2(1) = 0.
geG

Let ¢ : S3 — GL(2,C) be given by

o) =5 1 )weam= (] §)em=( " 7).
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#((23)) = < _1 _(1) >,¢>((123)) = ( _i _é ),é((132)) = < _(1) _i >

Then ¢ is a faithful representation of S3 with x4 = x2. Hence ¢ is an irreducible
representation of Ss.

Theorem 5.8 (Regular Representation) Let x. be the character afforded by
the right regqular representation of G. Let k = |Irr(QG)|. Then we have

(Z) Xn = Zi‘c:l Xi(lG)Xi7
(ii) x=(1c) = Y, [xi(1e)]? = |G,
(iii) xx(9) = Y1 xi(la)xi(g) =0, for all g € G — {15}.

Proof: Assume that x, = Zle n; X, where n; are non-negative integers. We
claim that n; = deg(x;). We know that 7(g) is a permutation on G, for all g € G.
Since xg = z if and only if g = 1¢, 7(g) moves all the letters if g # 1. Hence
X=(9) =| G |, if g = 1¢, and 0 otherwise.

Since
k k

< Xm Xj >=< ZanXj >= Zm < Xir Xj >
=1 =1

by the orthogonality of irreducible characters we have
< Xms Xj >=15 < Xj,Xj >=Nj.
Thus
1 -1
o= <X T g > xx(@)xi(7
geG

1

mﬂ G| x;(1g)) = x;(1g) = deg(x;), for all j.

(i) By above
k k
Xe =D mixi = Y _xi(le)xi-
i=1 i=1

(ii) Since x-(1g) =| G |, by part (i) we have

k k

X-(1a) =l G |= > xile)xi(1G) = [xi(1a))*.

=1 i=1

(iii) Since xr(g) =0 for all g € G — {1¢}, by part (i) we have

k
0=xx(9) = ZXi(lG)Xi(g)~
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Exercise 5.4 Let A be a square matriz over a field F. Assume that for some
n € N we have A™ = I, the identity matriz. If F' contains all the nth roots of 1,
show that A is similar to a diagonal matriz.

Lemma 5.9 If p is a representation of G and g is an element of G, show that
there is a representation ¢ of G such that ¢ is equivalent to p and ¢(g) is a
diagonal matriz.

Proof: Let | G |= n. Then ¢" = 1g, so that [p(g)]” = I, where m = deg(p).
Since C contains all the solutions for the equation 2™ = 1, p(g) is similar to
a diagonal matrix Dy. So there is a non-singular matrix P such that D, =
Pp(g)P~1. Now define ¢ : G — GL(m,C) by ¢(h) = Pp(h)P~!, for all h in G.
Then ¢ is a representation of G equivalent to p with ¢(g) diagonal. B

Definition 5.2 (Algebraic Integers) A complex number « is said to be an Al-
gebraic Integer if it is a root of an equation of the form

"+ az" a4+ ap 1z +a, =0,a, € Z.

Remark 5.1 (Algebraic Numbers) A complex number « is said to be an Al-
gebraic Number if there is p(z) € Q[z] such that P(«a) = 0. It can be shown
that the set of all algebraic numbers is a subfield of C. If « is not an algebraic
number, then we say that it is Transcendental. For example i and /2 are alge-
braic numbers (in fact they are algebraic integers). Hermite, C (1822-1905) and
later Hilbert, D proved that e is transcendental. Lindemann, CLF (1852-1939)
in 1882 proved the transcendence of w. Hilbert’s 7th problem is concerned with
the transcendence of complex numbers of the form a®:

Hilbert’s Seventh Problem If a,b € C such that a is an algebraic number
and a ¢ {0,1}, and b is an irrational algebraic number, then a® is transcendental.

A O Gelfond in 1934 proved that Hilbert’s seventh problem is true. For ex-
ample 2\/5, 2% and 7' are transcendental. But what about the case when a and b
are both transcendental? It is not known whether 7™, 7€ or e is transcendental.
However note that since

s

€™ is transcendental.

Now we establish some basic results on algebraic integers. In th following
we show that the set of all algebraic integers form a ring. This ring plays a
fundamental role in Number Theory.

Lemma 5.10 Let aq,as, -+ ,ap be complex numbers, not all zero, and suppose
that o € C satisfy equations of the form

k
aai:Zaijaj,izl,Z-n,kz, (1)
j=1

where a;; € Z. Then o is an algebraic integer.
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Proof: Equations in (1) represents a linear homogeneous system for oy, g, -« -, .
Since, by the hypothesis, system (1) has non-zero solution, the determinant of the
coefficient matrix must be equal to zero, that is

a — aql —ai2 —aiz - —alk
—a21 o — a2 —a23 - — a2k
det e . e :O.
—ag1 ) —ag3 - @ — Ak

We can see that the above determinant is a monic polynomial of degree k in «
with integer coefficients. Hence « is an algebraic integer. B

Lemma 5.11 If o and B are algebraic integers, so are o + 3 and af.
Proof: Suppose that o and § satisfy the following polynomial equations
o =ad" a4+t a,_1a+ar,a; €7,

B =018 + b2+ b1 + by, b; € Z.

Then for any non-negative integer I, o' can be written as a linear combination
(with integer coefficients) of 1,a,a?,---,a"~!. Similarly for any non-negative
integer m, ™ can be written as a linear combination (with integer coefficients)
of 1,8,8%,---, 351

Let oy, ae,--- ,a be the products a’3’, where i.j € Z, 0 < i < r —1 and
0 < j < s—1, arranged in some fixed order. Then any product of the form o!3™
can be represented in terms of a?/37, that is in terms of a1, ag, - - - , o With integer
coeflicients. Hence there are equations

k
(a4 Bai = cijo;,0<i < ke €Z,
j=1
k
(Oé,@)()éi = Zdijaj,O <3< k,dij e 7.
j=1

Now Lemma 5.2.10 implies that a + 8 and af are algebraic integers.
Exercise 5.5 Let a € Q. If « is an algebraic integer, show that o € Z.

Theorem 5.12 If x is a character of a group G, then for any g € G, x(g) is an
algebraic integer.

Proof: Since G is finite, g" = 15 for some n € N. Let p be a representation of
degree m of G that affords x. Then [p(g)]™ = I, and by Lemma 5.2.9 p(g) is
similar to a diagonal matrix. W.L.O.G we may assume that p(g) itself is diagonal
(because similar matrices have the same trace). So let

p(g):diag(€1,€27...76m): e e PPN PN PP R
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with €; € C. Now since [p(g)]" = I, we have € = 1, which imply that ¢;’s are
nth roots of unity and hence are all algebraic integers. Since x(g) = trace(p(g)) =
> €, by Lemma 5.2.11 we have that x(g) is an algebraic integer. In fact x(g)
is a sum of nth roots of unity, where n = o(g). B

If bar (-) denotes the complex conjugation a + bi = a — b7 in C, then we have
the following result on the conjugation of character values:

Corollary 5.13 If x is a character of a group G, then for any g € G we have
x(g71) = x(9)-
Proof: By the Theorem 5.2.12, we have x(g) = Z;”:l €;, where ¢;’s are nth roots

of unity with n = o(g) and p(g) similar to diag(e, €2, ,€m). Since p(g~1) =
[p(9)]71, p(g™1) is similar to

[diag(ey, €9, - ,em)]_l = diag(efl, 651, e ,efnl)

and hence x(g~') = Y7, €;'. We know that ¢; = easp(mjfb'”i) for some k; € Z

such that 0 < k; < n — 1. Since €€ = \e]—|2 = 1, we deduce that €; = 6;1 for all
0 < j < m. Hence

Exercise 5.6 Let p be a representation of a group G. Assume that x is the
character afforded by p. Show that

(1) Ix(9)l < x(e), for all g € G.
(i) If |x(g9)] = x(1g), then p(g) is a scalar matrix.
(iii)* x(g9) = x(1¢g) if and only if g € ker(p).
Definition 5.3 (F-Algebra) If F is afield and A is a vector space over F, then
we say that A is an F-Algebra if
(i) A is a ring with identity,
(i) for all X € F and x,y € A, we have A(zy) = AM(z)y = z(\y).
Example 5.2 (i) M, «,(F) is the algebra of all n x n matrices over a field F'.

(ii) Let V be vector space over F'. Consider End(V) = L(V,V) = Homp(V, V).
Then End(V) is a ring with identity under the addition and composition
of linear transformations on V, that is (f + g)(a) = f(a) + g(«) and (f o
g)(@) = f(g(a)). for all « € V and all f,g € End(V). Define the scalar
multiplication on End(V) by (Af)(a) = Af(a), for all f € End(V) and
for all & € V. Then End(V) is a vector space over F. Now

A(feglla) = Al(fog)(@)] = Alf(g(a))]
= (ANg(@) = [(Af) o gl(a).
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Hence A\(f o g) = (Af) o g. Similarly we have

A(foglla) = Al(fog)(x)]
= (fog)(Aa),since foge End(V)
= [flg(ra)) = f(Ag(a))
= [fo(Ag)](a),

so that A(fog) = f o (Ag).
Thus we have shown that End(V)is an F-Algebra.

Now we introduce another example of an algebra, the one which plays an
important part in the theory of representations, namely the Group Algebra C[G].

Definition 5.4 (Group Algebra) Let G be a finite group and F be any field.
Then by F[G] we mean the set of formal forms {3 o Ag.9 = A\g € F}. We
define the operations on F[G] by

(1) dec Agg + deG Hgg = deGO‘g + Kg)9,
(it) A yeq Ag9) =D yec(Ag)g, A€ F,
(iti) (deG Agﬂ)-(deG 1gg) = deG[ZhGG Ahbn-1glg-

Notice that the definition of multiplication given in (i) is the result of as-
suming linearity and the multiplication in G. Under the above operations, F|G] is
an F-algebra. The element of F|G] for which A\y = 1p and A\, = Op if h # g is
identified by g, that is 1p.g = g. Under this identification we embed G into F[G)|
and in fact G becomes a basis for F|G].

Remark 5.2 (i) If |G| > 1, then F[G] has always zero divisors: Let g € G
such that o(g) =m # 1. Then 1g —g and 1g +g+g>+---+ g™ ! are two
non-zero elements of F[G], and we have

(lg—9)(la+g9++-+g" ) =1lg—¢" =1ag—1a =0.

(ii) Conmsider the group G = V4 = {e,a,b,c},F = C. let e + ia + /2 b and
V2 b —ic be two elements of C[G]. Then
(e+ia+V2b).(V2b—ic) = V2b—ic+V2iab—i’ac+2b* —iv2be
= V2b—ic+V2ic+b+2—iv2a
= 2 —iV2a+ (V2+1)b+i(vV2-1)ec

Alternatively we can use part (iii) of the Definition 5.2.4, and we get

(04+0+v2 x V2+0)e
+ (I1x04+ix0+VvV2x —i+0)a
+ (V24ix—i+0+0)b+(=1+vV2+0+0)c

(e +ia+V2b).(vV2b—ic)
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(iii) Obviously G is a subgroup of Ug(g.

Exercise 5.7 (i) Let G = Dg =< r,s: 1t = s> = ¢,rs = sr™! > . Assume
that o = 72 +r — 2s and B = —3r? + rs are two elements of the integral
group ring Z[G]. Compute Sa, aff — fa and Saf.

(ii) Consider the following elements of Z[Ss]:
a=3(12)—-5(23)+14(123),8=06e+2(23)—7(123),
where e = 1g,. Compute the following elements of Z[Ss5] : 2a — 38, fa, af.

Definition 5.5 (Class Sums) Let C1,Cy, -+ ,C, be the conjugacy classes of el-
ements of G. For 1 < i < r we define the Class Sums K; by K; = decig.
Then clearly K; € F[G] and we have the following result:

Theorem 5.14 The set {K1, Koy, -+, K.} is a basis for the centre of the group
ring C[G].

Proof: If g € G, then ¢~ 'C;g = C;. Hence we have
g Kig=g" " (D>_hg=> g 'hg= > I =K,
hel; heC; heC;

Thus K,g9 = gK; for all g € G. Hence K; € Z(C[G]), where Z(C[G]) denotes the
centre of C[G].

Since distinct conjugacy classes are disjoint, {Ki, Ka, -+, K.} is a linearly
independent set (why?). Now let u =3 5 Aqg be an element of Z(C[G]). Let
x € G. Then

TU = Z Agzg = Z )\g(xgxfl)x,
geG geG
ur = Z Ag(gz) = Z )\l.gl.—l(xgx_l)x,
ge@ geG

and since uz = zu, we get > o Ag(zgz™l)z = > gec Agz—1(zgz~1)z. Hence
Ag = Agga—1 for all x € G. Thus the coefficients of all conjgates of g are the same
in . Hence u = Y77 (M) ce, 9) = 2oimg MKy Thus {Ky, Ko, -+ K, } is a
basis for Z(C[G]). &

Remark 5.3 Let p be a representation of G. Then p is a homomorphism from G
into GL(n, C) for some n € N. We can extend p by linearity to an C-algebra homo-
morphism p : C[G] — My, (C). Conversely if p : C[G] — M,,x,(C) is a rep-
resentation of C[G] (that is p is an C-algebra homomorphism), then p(1g) = I,.
It follows that for all g € G, p(g) is non-singular and [p(g)]~! is equal to p(g~1).
Hence the restriction of p to G (note that G C C[G]) will be a representation of
G over C.

Theorem 5.15 If p is an irreducible representation of degree m of C[G] with the
character x, then
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(i) p(K;) = dilpm,d; € C,
(1) KiKj =311 NijiKe, hijr € NU{0},

(iii) did; =51 Nijedr,

(iv) di = hix(gi)/x(1a), hi = |Ci|, gi € C;.

Proof: (i) Since K; € Z(C|G]) by Theorem 5.2.14, p(K;) commutes with all
elements of p(G). Now since p is irreducible, it follows from Corollary 5.1.9 that
p(K;) = d; I, for some d; € C.

(ii) Since K;, K; € Z(C[G]), we have K;K; € Z(C[G]). So by Theorem 5.2.14,
INijx € C such that K;K; = 22:1 Aiji K. If we write this equation in terms of
elements of G, then since the coefficients on the left hand-side are non-negative
integers, \;j, must be non-negative integers.

(iii) Using parts (i) and (ii), we get

didiLn = p(Ki)p(K;) = p(KiK;) = p(>_ Nije Kx)
k=1

= > Nijep(Ki) = O Nijrdi) I
k=1 k=1

Hence did; = >y Nijedk.
(iv) By part (i) we have

hix(g:) = Y x(g) =) trace(p(g))

g€eC; geC;
= trace( Y plg)) = trace(p( 3 9)) = trace(p(K))
9€C; 9€C;
= trace(d;I,) = md; = d;x(1g).

Hence d; = hix(9:)/x(1g). W

Corollary 5.16 The d;’s in Theorem 5.2.15 are algebraic integers.

Proof: By part (iii) of Theorem 5.2.15, we have d;d; = > ,_; \ijpdk, where
Aijr are non-negative integers. For a fixed j, let B be the r x r matrix (\i;x)
and D be the column matrix (di)rx1. Then we have (d;I.)D = BD and hence
(B —d;I,)D = 0,y

Since by Theorem 5.2.15 (part (iv)) we have

di = hix(lg)/x(1g) = h1 =1 #0,

D is a non-zero matrix. Hence B—d; I, is a singular matrix, so that det(B—d;I,) =
0. Since A;ji are integers, the equation det(B — d;I,) = 0 produces a polynomial
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equation for d; with integer coefficients and leading coefficient of £1. Thus d; is
an algebraic integer. B

Note: If C; is a conjugacy class of G, then Cy = {g € G : g=' € C;} is also a
conjugacy class of G. Obviously C; = Cy if and only if g ~ g~ for all g € C;.

Theorem 5.17 (Orthogonality relations) Let Irr(G) = {x1, X2, ", Xk} Then
(1) ﬁ >_gec Xi(9)X;(g) = bij, row-orthogonality.
(ii) Z]::l Xs(9:)xs(g5) = 6:5/|Calg;)|, column-orthogonality relation.

Proof: (i)

- 1 _
0ij = < Xi,Xj>= @ ZXi(g)Xj(g Y
geG
1
= @ > xil9)x;(9)
geG

by Corollary 5.2.13.

(ii) We know that K;K; = > | AijmKpm. Then 1g occurs in the expansion
of K;K; if and only if ¢ = j’ (that is g; is conjugate to gj_l). Thus A\;j1 = 0 if
i # 7" and A;j1 = h; if i = j'. For each 1 < s < k, using Theorem 5.2.15 we get

didj = [hixs(9:)/xs(1c)] % [hixs(95)/xs(1c)]
= Z )\ijm[ths(gm)/XS(lG)]'
m=1
Thus .
hihjXs(9)Xs(97) = D NigmhmXs(1a)Xs(gm)-
m=1
Therefore
k r k
hihy Y xs(90)xs(95) = Y Pijmhm > Xs(16)Xs(gm)] =
s=1 m=1 s=1
k r k
Aijiha ZXs(lG)Xs(lG') + [Aijmhm Z Xs(1a)xs(gm)] = Aij1|G| +0,
s=1 m=2 s=1

by Theorem 5.2.8. This show that

Aij1|G|/hih;

k
> xs(gi)xs(95)

= 0x |G|/hzhj =0, Zf’L?éj,
= h; x|G|/hih; = |G|/hj = |Ca(g;)l, if i =J".

Hence S0, v,(9:)xs(g5) = ij7|Cc(g;)|. M
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Exercise 5.8 Show that Ele Xs(9:)xs(g5) = 6:51Ca(g;)l-

Theorem 5.18 (The number of irreducible characters) The number of ir-
reducible characters of a group G equals the number of comjugacy classes of G.

Proof: Let Irr(G) = {x1,Xx2, - ,Xx} and let r be the number of conjugacy
classes of G. Then by the Theorem 5.2.6 we have k < r. Now let

S ={(x1(9i), x2(9i), -+, xx(gi)) : 1 <i <7}

We claim that S is a linearly independent subset of C*. Assume that 3\; € C
such that

Z Ai(x1(9i), x2(9i), -+, xx(gi)) = 0.

i=1

Then we must have >\, A\ixs(g;) = 0,1 < s < k. So for each j we have

D Aixs(g)xs(g;) =0,1 < s < k.
=1

Hence .
> D Xixs(9i)]xs(g;) = 0 for all j.
s=1 i=1

So that ) .
Z)‘i[z Xs(gi)XS(gj)] =0 for all j.
i=1 s=1

Now applying Theorem 5.2.17 (ii), we get

r

> Xidijr|Calgs)| = 0.

i=1

That is Aj/|Ca(g;)] = 0, so that A\ =0 for all 1 < j < r. This shows that \; =0
for all 1 < j < r. Thus S is a linearly independent subset of C*, and hence we
have

r =S| < dim(CF) = k.

Therefore r = k as required. W

Note: Let A be the r x r matriz (x:(g;)) = (ai;). Then A is called the character
table of G. The rows are indexed by the irreducible characters of G and the
columns by the conjugacy classes of G. We take the first row and first column
to be indexed by the trivial character and 1 respectively, that is x1 is the trivial
character and g1 = 1g. Theorem 5.2.18 shows that columns of A are linearly
independent, and hence A is non-singular. In particular the rows of A are also
linearly independent.

Exercise 5.9 Compute A~'. [Hint: First let B = (b;;),«,, where bj; = le(gj).
Then show that B = A™1].
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Note: Property (i) in Theorem 5.2.17 implies that

r

Z[Xs(gi)}Q = 0 if g; not conjugate to g;*
s=1

= |Cq(g;)| otherwise.

In particular we have Y_._ [xs(1g)]? = |G|, which is the result we proved in
Theorem 5.2.8. This shows that the sum of squares of the degrees of the irreducible
characters of G is |G|.

Exercise 5.10 Let p be a representation of GG of degree m. Define p* from G into
GL(m,C) by px(g9) = [p(g~1)]¢, transpose of p(g~1). Then show that

(i) px is a representation of degree m of G,
(i) Xp+(9) = Xp(g), for all g € G,

(iii) If p is irreducible, so is px,
(iv) If p ~ ¢, then px ~ ¢ *.

Theorem 5.19 The degree of an irreducible representation of a finite group G
divides |G)|.

Proof: By Theorem 5.2.15 (iv), h;x(zil(gf;) are algebraic integers for all k£ and 4. By

Theorem 5.2.12, each x,(gx) is an algebraic integer. Hence

=33 n

j=1 k=1

(k)

is an algebraic integer by Lemma 5.2.11. Now

a = ZZ’“( D (9)]
j=1geG j= lgEG
= % L (o)
xi(la)
j=1geG ™
1 5 o~ G N5 A
= 0y BBl = i e =16l (o),

by Theorem 5.2.17, part (i). Hence o € Q. Since « is an algebraic integer and
a € Q, we must have o € Z. Thus x;(1¢g) divides |G|. B

Note: The integers A;ji, defined in the Theorem 5.2.15 (ii) are called Class
Algebra Constants. In the following corollary we will produce a formula for
these integers. This formula plays an important role in the application of character
theory of finite groups.
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Corollary 5.20

G| X6 (90)xs(97) X (9k)
|Cc(9:)]|1Cc(g;)] '

Aijk =

s=1

Proof: Let p, denote the representation that affords x,. Since K; K; = 2;21 Aijm Ko,
we have

ps(Ki)ps(Kj) = ps(BGK;) = > Nijmps(Km). ()

Now since ps(K;) = d;l, and ps(K;) = d;jI,, where n is the degree of p, (see
Theorem 5.2.15), we have

N Xslg) o Xs(9;)
ps(Kz)—thS(lc)In d ps(K;) = h; (e )Im

by Theorem 5.2.15. Now by using the relation (*) above, we get

Xs(gz) _Xs(gj) o . N Xs(gm)
o) <ty — 2 Nimhn

Hence

AigmhmXs (gm) = hiths(gi)XS(gj)/Xs(lG)a (1)

m=1

multiplying by both sides of (1) by xs(gx) and summing from s = 1 to s = r we
obtain

Z Aijm/im sz gm)Xs(gk)] = hih; Z Xs(9i Xé((f;))XS(gk). @)

Since .
D Xs(9m)Xs (98) = Skm|Car(gn)|
s=1

by Exercise 5.2.7, we have

Z Aijmhm6km|Ca(gx)| = hih; Z Xs(gi)XS<gj)Xs(gk).

m=1 s=1 X (1G)
So that
_ X6 (96)xs(95) X5 (gk)
Nijehi|Ca(gr)| = hihy; ; e .
Thus
|GG Xs(9:)xs(95)xs (k)
Xiik|G .
= EatlICals) ?} )

This gives the desired formula for A;j,.H
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Example 5.3 (i) If ¢> = 1¢g, then x;(g9) € Z for all x; € Irr(G) : Because
g% = 1g implies that g = g71. If g = 1¢, then x;(g) = xi(1g) = deg(x;) € Z. If g
is not the identity, then o(g) = 2 and hence x;(g) is a sum of 2nd roots of unity.
Since the roots are 1 and -1, clearly x;(g) € Z.

(i) If g is conjugate to g~ !, then x;(g) € R for all x; € Irr(G) : Because g
conjugate to g~ ! implies that y;(g) = xi(¢7*) = xs(g9). Thus x;(g) € R.

(iii) Assume that g € G is an element of order three and g ~ g~—1. Then x;(g) €
Z for all x; € Irr(G) : Because g ~ g~ implies that x;(g) € R for all x; € Irr(G),
by part (ii). Let x;(g) = &1+ &2+ -+ &, Where ¢; € {1,—% — ?i, -+ @l}
Assume that for some j, 1 < j < m, we have

INERVEY 1 V3,
€ =—-——iore =—=+—i.
/ 2 2 / 2 2
Then since x;(g) € R, € must also appear in x;(g). Now since €¢; + € = —1, we

deduce that x;(g) € Z.

Example 5.4 (Character Table of S;) In S; there are 5 conjugacy classes
and hence Irr(Ssy) = 5. Consider the map py : Sy — C given by pa(a) = 1
if « is even and ps(a) = —1 if @ is odd. Then ps is a representation of degree 1
and hence ps = X,,. let denote this character by x». Then we have

x2(ls,) = x2((12)(34)) = x2((123)) =1

and
x2((12)) =x2((1234)) = -1

So we have the following table:

Classesof Sy | 1g, (12)(34) (12) (1234) (123)
hi 1 3 6 6 8
X2 1 1 -1 —1 1
Since
<> = o[ B(1)) + 611+ 6(~1)(~1) + 8(1)(1)
= i[1+3+6+6+8] =24/24 =1,

2 is irreducible.

Now let 7 : Sy — GL(4,C) be the natural permutation representation of Sy.
Then x-(g) is equal to the number of fixed points of g on the set {1,2,3,4}. Then
we have

Classesof Sy | 1g, (12)(34) (12) (1234) (123)
hi 1 3 6 6
X 4 0 2 0 1

It is not difficult to see that < xr, xx >= 2 and < X, x1 >= 1, where x; is the
trivial charascter. hence x, = x1 + X3, where x3 is an irreducible character of
degree 4 — 1 = 3. Then we have x3(g9) = x»(9) — x1(g), for all g in Sy.
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Now it remains to find two more irreducible characters of Sy, namely x4 and
Xs- Since 30 [xi(1s,)]? = |G| = 24, we have

el ) + [xs(1s,)]2 =24 — (14+1+9) =24 — 11 =13 =4 +9.

This implies that we can assume deg(x4) = 2 and deg(x4) = 3. So far we have
the following information for the character table of Sy :

Classesof Sy | 1

s, (12)(34) (12) (1234) (123)
h; 1 3 6 6 8
1 1 1 1 1 1
Y2 1 1 -1 ~1 1
X3 3 -1 1 -1 0
X4 2 a b c d
X5 3 e f g h

We are able to complete the character table by means of the orthogonality rela-
tions. First notice that, since g ~ g~ for all g € Sy, we have {a,b, c,d,e, f,g,h} C
R. Using Example 5.2.3, parts (i) and (ii), we have {a, e, b, f,d, h} C Z. Now using
the orthogonality of the first two columns we get

1+1-3+2a+3e=0,

so that
2a+3e=1. (1)

Since 3°7_ [xi((12)(3 4))]2 = |Cs, ((1 2)(3 4))|, by Note 5.2.7, we have

1+1+1+a2+62:%

=8,
and hence
a®+e* =5 (2)

Using relations (1) and (2) we obtain @ = 2 and e = —1.
Similarly the orthogonality of the first column with columns three and five
give
1-14+3+20+3f=0,1+1+0+4+2d+3h=0.
We deduce that
2b+3f=-3 (3)

and
2d+3h=-2. (4)
Since
- 24
Z[Xi((l 2 =1Cs,((12) =5 =4
and

S (1232 = [Cs, (1 23)] = 2 =3,

=1
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we get
V+fP=4-3=1 (5

and
d>+h*=3-2=1. (6)

Now relations (3) and (5) imply that b = 0 and f = —1. Similarly relations (4)
and (6) imply that d = —1 and h = 0. At this stage we produce the following
information on the character table of Sy :

Classes of Sy | 1

s, (12)(34) (12) (1234) (123)
h; 1 3 6 6 8
X1 1 1 1 1 1
X2 1 1 -1 -1 1
X3 3 —1 1 -1 0
X4 2 2 0 c -1

Using the orthogonality of columns 3 and 4 we obtain
1+41-140xc—g=0
and hence g = 1. Now the orthogonality of columns 4 and 5 gives
1-14(-1)x04+c¢(-1)+1x0=0,
and hence ¢ = 0. This completes the character table of Sy :
Classesof Sy | 1
hi
X1
X2
X3

X4
X5

. (12)(34) (12) (1234) (123)

W N W |y

3
1
1
-1
2
-1

Exercise 5.11 (Characters of cyclic groups) . Let G = (x) be a cyclic group
of order n. Let €2¥7/" be the nth roots of unity in C, k = 0,1,2,...,n — 1. De-
fine py : G — C* by pr(z™) = [e*#7/"]™. Show that pj, define the n distinct
irreducible representations of G.

Exercise 5.12 Use the above exercise to construct the character table of the
cyclic groups of order 2, 3, 4. 5 and 6.

Exercise 5.13 Calculate the character table of the V4, the Klien 4-group.

Note: If G is an abelian group, then all irreducible representations of G are of
degree 1. In general, we would like to know how many of the irreducible represen-
tations of an arbitrary group G are of degree 1. In the following theorem we give
the answer to this question.
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Theorem 5.21 Let G be a finite group. The number of representations of G of
degree 1 is equal to [G : G'].

Proof: If p is a representation of degree one of G, then by Exercise 5.3(i) we
have Ker(p) 2 G'. Now the define ¢ : G/G' — C* by ¢(g9G’") = p(g), for all
g € G. Then ¢ defines a representation of degree one for the group G/G’ (note
that since G’ C Ker(p), ¢ is well-defined.) Since G/G’ is abelian, it has [G:G']
conjugacy classes. Hence the group G/G’ has [G:G’] irreducible characters. Since
G /G’ is abelian, all its irreducible characters are of degree one (see Exercise 5.3,
part (ii).) Now consider the natural homomorphism 7 : G — G/G’. If ¢ is a
representation of G/G’ of degree one, then ¢ o 7 is a representation of degree
one of G. Now it is not difficult to see that we have a one-to-one correspondence
between the set of all representations of degree one of G and the set of all the
irreducible representations of the group G/G’.1

Exercise 5.14 Compute the character table of A4.

Exercise 5.15 Calculate the character tables of @ (the quaternion group of order
8) and Dg. Show that they have same character tables.

Exercise 5.16 Calculate the character table of As. Recall that As is a non-
abelain simple group of order 60 and hence (A45)" = A5.

Note: In the Ezercises 5.1.1 and 5.1.2 we observed that there is a one-to-one cor-
respondence between representations of G/N and representations of G with kernel
containing N. Furthermore it is not difficult to show that, under this correspon-
dence, wrreducible representations correspond to irreducible representations. We
put this result in terms of characters in the following theorem. If x is a character
afforded by a representation p of G, we define ker(x) to be ker(p).

Theorem 5.22 Let N < (.

(i) If x is a character of G and N <ker(x), then x is constant on cosets of N
in G and X on G/N defined by X(gN) = x(g) is a character of G/N.

(ii) If X is a character of G/N, then the function x defined by x(g) = X(gN) is
a character of G.

(iii) In both (i) and (ii), x € Irr(G) iff x € Irr(G/N).
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Proof: (i) and (ii) follow from Exercise 5.1.1 and 5.1.2.
(iii) Let S be a set of coset representatives of N in G. Then we have

1={(xx) = ‘—éle(g)-x(g’l)
geG

- ‘—az N x(9) x(g™Y)
geSs

1 _ o
= @Z\NI-X(QN)-X(Q 'N)
geSs
1 _ SO
= > IN[-X(gN) - R(gN)~!
gNeG/N
1 _ SN
= G/ > R(GN)-R(N) T = (®.R)-
gNeG/N
n

Example 5.5 Consider the group G = Sy. Let N = {e,(12)(34),(13)(24),(14)(23)}<
G.If C; = [g;] is a class of G, then Ci = [g:N] is a class of G/N. However, distinct
classes in G may produce equal classes in G/N. Referring to the character table

of Sy (See Example 5.2.4), we see that

{x| x € Irr(G), N Cker(x)} = {x1, x2, x4}-
Hence Irr(G/N) = {X1, X2, X4} Using the character table of Sy we have
Classes of Sy || 1s, (12)34) (12) (1234) (123)

i 1 1 1 1 1
X2 1 1 ~1 ~1 1
X2 2 2 0 0 —1

Observe that columns 1 and 2 are identical, as are columns 3 and 4. Deleting
repeats, we obtain the character table of G/N

Classes of G/N || N (12N (123)N

X1 1 1 1
s 1 -1 1
X4 2 0 -1

we can see that G/N is a group of order 6 and it is not abelian. Hence G/N 2 Ss.
(See the character table of S3 in the Example 5.2.1)

Note: If N QG, then the character table of G determines whether or not G/N
is abelian. There is no way to determine from the character table of G whether
or not N is abelian.

Corollary 5.23 Let g € G and N < G. Then |Ca(g)| > |Cq/n(gN)|.
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Proof: We know that

Irr(G/N) = {X] x € Irr(G), N Cker(x)}.
ICon(gN)| = > R(gN)-X(gN)™"
xelrr(G/N)
= > XN RGN = > REN)P
X€Irr(G/N) eIrr(G/N)

Relrn(
= > {Ix(@P x € Irr(G), N Cker(x)}

IN

> Ixo)P =ICalg)l.

x€lrr(G)

6 Group Actions and Permutation Characters

Suppose that G is a finite group acting on a finite set Q2. For a € 2, the stabilizer
of a in G is given by

Go = {g € Glo? = a}.

Then G, < G and [G : G,] = |A|, where A is the orbit containing a.

The action of G on 2 gives a permutation representation 7w with corresponding
permutation character x, denoted by x(G|f2). Then from elementary representa-
tion theory we deduce that

Lemma 6.1 (i) The action of G on Q) is isomorphic to the action of G on the
G/Gq, that is on the set of all left cosets of Go in G. Hence x(G|Q2) =
X(G|Ga).

(i) x(G|Q) = (I, )Y, the trivial character of G, induced to G.
(i4i) For all g € G, we have x(G|Q)(g) = number of points in Q fixed by g.

Proof: For example see Isaacs [12] or Ali [1]. B

In fact for any subgroup H < G we have

~ |Ca(9)l
X(GIH)(9) =) =7
; |Ch (i)
where hq, hs, ..., by, are representatives of the conjugacy classes of H that fuse to
[g) =Cy in G.
Lemma 6.2 Let H be a subgroup of G and let Q be the set of all conjugates of
H in G. Then we have

(1) Gu = Na(H) and x(G[Q) = x(G|Ne(H).
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(i) For any g in G, the number of conjugates of H in G containing g is given
by

|Cc(g _ S 1Cq(9)|
(G (g ZI Covacm (@ )‘ = [Ng(H) : H] 27

where x;’s and h;’s are representatives of the conjugacy classes of Ng(H)
and H that fuse to [g] = Cy in G, respectively.

Proof:
(i)
Gu={reGH*=H} ={x € G|z € Ng(H)} = Ne(H).
Now the results follows from Lemma 6.1 part (i).

(ii) The proof follows from part (i) and Corollary 3.1.3 of Ganief [11] which uses
a result of Finkelstien [9]. W

Remark 6.1 Note that
X(GIQ)(g) = [{H" : (H") = H*}| = [{H"|H" 9" = H} =
[{H|a" g € Na(H)}| = [{H?|g € eNa(H)z™'}| = [{H?|g € (Ne(H))"}.

Corollary 6.3 If G is a finite simple group and M is a mazimal subgroup of G,
then number \ of conjugates of M in G containing g is given by

k

() = 3 SE 'CO;((Q))'|

where T1,To, ..., T are representatives of the conjugacy classes of M that fuse to
the class [g] = Cy in G.

Proof: It follows from Lemma 6.2 and the fact that Ng(M) = M. It is also a
direct application of Remark 1, since

x(GI)(9) = {M*|g € (Na(M))*"} = {M®|g € M*}|. B

Let B be a subset of Q2. If BY = Bor BN B = @ for all g € G, we say B
is a block for G. Clearly @,Q and {a} for all & € Q are blocks, called trivial
blocks. Any other block is called non-trivial. If G is transitive on €2 such that
G has no non-trivial block on €, then we say G is primitive. Otherwise we say
G is imprimitive.

Remark 6.2 Classification of Finite Simple Groups (CFSG) implies that no 6-
transitive finite groups exist other than S, (n > 6) and A, (n > 8), and that the
Mathieu groups are the only faithful permutation groups other than S, and A,
providing examples for 4- and 5-transitive groups.
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Remark 6.3 It is well-known that every 2-transitive group is primitive. By using
CFSG, all finite 2-transitive groups are known.

The following is a well-known theorem that gives a characterisation of primitive
permutation groups. Since by Lemma 6.1 the permutation action of a group G
on a set  is equivalent to the action of G on the set of the left cosets G/G4,
determination of the primitive actions of G reduces to the classification of its
maximal subgroups.

Theorem 6.4 Let G be transitive permutation group on a set . Then G is
primitive if and only if G, is a mazximal subgroup of G for every a € ).

Proof: See Rotman [37]. B

7 Designs

An incidence structure S = (P, B, ) cousists of two disjoint sets P (called points)
and B (called blocks), and Z C P x B. If (p, B) € Z, then we say that the point p
is incident with the block B. The pair (p, B) is called a flag. If (p, B) ¢ Z, then
it is an anti-flag.

Example 7.1 Let P be any set and B C QP, where 27 is the set of all subsets
of P (power set). Let Z = {(p,B) : p € P,B € B,p € B}. Then we have an
incidence structure S = (P, B, 7).

For example let P = {1,2,3}, B = {{1},{1,2},{2,3}}. Then

T ={(1,{1}),(1,{1,2}),(2,{1,2}),(2,{2,3}), (3,{2,3})}
We have three points and three blocks. Note that in this case Z ; P x B.

Definition 7.1 (t-Design) An incidence structure D = (P,B,T), with point set
P, block set B and incidence T is a t-(v, k, \) design, if |P| = v, every block B € B
is incident with precisely k points, and every t distinct points are together incident
with precisely A blocks.

We will say that a design D is symmetric if it has the same number of points
and blocks. A t — (v,k,1) design is called a Steiner System. A 2 — (v,3,1)
Steiner system is called a Steiner Triple System.

A t—(v,2,\) design D can be regarded as a graph with P as points and B as
edges.

Example 7.2 . Consider Example 7.1, where P = {1, 2,3}, B = {{1, 2}, {1,3},{2,3}},
and (p, B) € Z if and only if p € B. Then the design D is a 1 — (3,2,2) design,
which is also a 2 — (3,2,1) design. It is also symmetric.

Exercise 7.1 Let P = {1,2,3}. Consider Example 7.1 and find two more t-
designs.
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Remark 7.1 A Steiner system 2 — (n? +n + 1,n + 1,1) is called a Projective
Plane of order n. A Steiner system 2 — (n2,n,1) is called an Affine Plane of
order n. Projective and affine planes of order n = p¥, where p is a prime, exist.
But the question is: Is there a finte plane of order n when n is not a
prime? The conjecture is that the answer is NO, but so far has not been proven.
It can be shown that a projective plane of order n exist if and only if there exits
an affine plane of order n.

Bruck-Ryser Theorem (1949)[6] states that: if n = 4k 4+ 1 or 4k + 2 and n is
not equal to the sum of two squares of integers, then there is no projective plane
of order n.

Note that 10 is not a prime, 10 =4 x 2 + 2, but 10 = 3% + 12. So we cannot
use Bruck-Ryser Theorem to show the nonexistence of a finite plane of order 10.
The non-existence was proved (using computers) by Lam in 1991 (see [27]) after
two decades of search for a solution to the problem.

The next smallest number to look at is 12. We do not yet know whether there
exists a finite plane of order 12.

Figure 1: Fano Plane

Example 7.3 Fano Plane . The Fano plane is a projective plane of order 2,
which is a 2 — (7,3, 1) design (a Stiener triple system on 7 points).

In the Figure 1 we have P = {1,2,3,4,5,6,7}, B = {Bi, Ba, B3, B4, By, Bg, Br},
where By = {1,2,3},Bs = {1,5,6}, By = {1,4,7}, By = {2,4,6}, B; = {2,5,7},
BG = {3,6,7} and B7 = {3,4,5}.

We can see that the Fano plane is a symmetric 2-design. Also note that it is
al—(7,3,3) design.

Remark 7.2 (Counting Principles) In combinatorics often we need to count
the number of elements of a set S in two different ways and then equate our
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answers. So in general assume that X and Y are two finite sets and S C X x Y.
We define

S(CL, ): {(x,y) : (xvy) ES,J?:a}, S(’b) Z{(Z‘,y) : (3:7y) GS’y:b}'

Then . .
S =JS(a, ) =JS(,0).

S| =" IS(a, )l = Y 1S(,b)l,

acX bey

Hence we have

and if |S(a, )| =1 and |S(,b)| = m are independent of a and b respectively, then

we have
I|IX| =m|Y].

We use the Counting Priciple described above (see Remark 7.2 to prove the
following theorem on t-designs.

Theorem 7.1 If D is a t — (v,k,\) design and 1 < s < t, then D is also a
s — (v,k, As) design where

(w=s8)v=—s=1)---(v—t+1)

As = h—s)(k—s—1)-(k—t+1)

Proof: Let S be a set of s points and let m be the number of blocks that contain

S. Let
T={(T,B):ScTcCB,|T|=t,B e B}

Now count the number of elements of 7 in two different way, we have

v—8 k—s
t—s )=m( t—s )-

A

We can see that m is independet of S and hence

v—38 k—s

As =m = A t—s )/ t—s

);

which gives the formula. H
Note that Fano Plane is a 2-(7,3,1) design. Here A = A\; = Ay = 1, and hence
A1 =1x =1 = 3. We deduce that Fano plane is also a 1 — (7,3, 3) design.

Remark 7.3 1. X=X and Ag = =5 X Agy1.
2. If the number of blocks in a t — design D is denoted by b, then we have

vv—1)---(v—t+1)
k(k—1)---(k—t+1)

b= X =

If we denote Ay (replication number) by r, then we have

(v—1Dw=2)---(v—t+1)
(k—1)(k—2)-(k—t+1)

T:>\1:
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Thus we get

b= —r

v
k
and hence we deduce that

bk = vr.

3. In a 2-design 2 — (v, k, \), we have Ao = X and by part (1) we get

v—1
)\1 = 5 —1 X )\2,
and hence
ME-=1)=Av-1)
so that

r(k—1)=Av—-1).

Definition 7.2 (Incidence Matrix) Let D = (P,B,Z) be a design in which
P ={p1,p2, - ,pv} and B={By,Ba, -+ ,By}. Then the incidence matrix of D
is defined to be a b x v matrizc A = (a;;) such that

{1zf pj, Bi) €T
0 if (p;, B ¢I

Theorem 7.2 Let D is a 2 — (v, k, ) design with A as its incidence matriz. If
I, is the v X v identity matrix and J, is the v X v matrix with all entries equal to
1, then we have

ATA = (r = NI, + M.,

and
det(A'A) = (r = A" H(A = A+ 7) = (r— )" rk.

Proof: Easy to see that (AtA)Z-j =5 a0k , which is equal to the inner product
of ith column of A with jth column of A. If ¢ = j then this number is r and if
i # j it is A\. Hence

rooA A
Aroaee A
= L . =r= v+ Ay,
AtA ) ( NI AJ,
A A e

Subtract the first column from each other column, and then add each row to the
first row. We get a lower triangular matrix with diagonal entries r + (v — 1)\, r —
Ar— A, -, 7 — A. Thus

det(A*A) = (r — N\ Mo = A +7)
and since by Remark 3 (3) vA — A =r(k — 1), we have

det(ATA) = (r =N (k= 1) +7) = (r = \)""'rk.
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[ |
In a t-design D, where ¢ > 2, the order of D is defined to be n = A\; — A2. So
ift=2,thenn=7r— X and

det(A'A) = (r — \)""'rk =n""lrk.

Since by Theorem 7.1 any ¢-design with ¢ > 2 is also a 2-design, Theorem 7.2
is true for any t-design with ¢t > 2.

Corollary 7.3 If D is a none-trivial 2-design with an incedence matrix A, then
rank(A) over Q is v.

Proof: A'A is an square v X v matrix and since D is non-trivial, v — k # 0 so
that r — X # 0, (because in a 2-design we have r(k — 1) = A(v —1)). Thus 0 #
det(A*A) = (det(A))?, which implies that det(A) # 0. Therefore rankg(A) = v.
]

Example 7.4 (Incidence Matrix of Fano Plane) Consider the Example 7.3.
If we let M be the incidence matrix of the Fano plane, then we have that

[1 1 1. 0 0 0 0]
1 000110
1 001001
M=|0101010
0100101
0010011
|00 1 110 0]

Since Fano plane is a non-trivial 2-design, by Theorem 7.2 we have that rankg(M) =
7 and detg(M) = 24. Why?

Exercise 7.2 If M is the incidence matrix of the Fano plane show that
i. rankp(M) =7, where F is a field of characteristic p with p ¢ {2, 3}.
il. rankp(M) = 4, where char(F) = 2;
ili. rankp(M) = 6, where char(F) = 3.

Corollary 7.4 IfD is a t — design with t > 2, then b > v, that is the number of
blocks is at least same as the number of points.

Proof: Since D is a non-trivial 2-design, rankg(A) = v. Now since Aisa b x v
matrix, its rank must be less than or equal to number of its row, that is we have
v=rankg(4) <b. 1

Definition 7.3 An isomorphim between two designs D1 and Dy is a bijection
¢ between sets of points P1 and Py and between sets of blocks By and By such that
for any p € Py and B € By, pZ1 B implies that ¢(p)Z2p(B). If D1 = Da, then ¢
is called an automorphism (or a collineation). The group of automorphisms of
a design D is denoted by Aut(D).
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Example 7.5 If D is the 2-design describing the Fano plane (see Example 7.3),
then

G = Aut(D) =< (5 6)(7 4),(1 2)(6 7),(5 7)(1 3),(1 45732 6)>
The group G is 2-transitive on points with
|G| =T7Tx6X |G12‘ = 168,

where
Gi2={e, (5 6)(7 4),(5 T)(4 6),(5 4)(6 NN} =V,

Also note that G; = Sy and G = PSL(2,7) = PSL(3,2).

Definition 7.4 i. The complement of D is the structure D = ( B,1),
where T =PxB—Z. IfDisat—(v,k,\) design, then D is a t—(v,v—k, \)
design.

ii. The dual structure of D is D' = (B, P,I"), where (B, P) € ' if and only if
(P,B) € Z. Thus the transpose of an incidence matriz for D is an incidence
matriz for D'. We say D is self dual if it is isomorphic to its dual.

iti. A t-(v,k,\) design is called self-orthogonal if the block intersection num-
bers have the same parity as the block size.

Exercise 7.3 Show that the complement of the Fano plane is a 2—(
If M is the incedence matriz of this complement, show that det(M)
is a field of characteristic 2, show that rankp (M) = 3.

7,4,2) design.
— 90, [fF

8 Codes

Definition 8.1 Let F be a finite set of q elements. A q-ary code C is a set of
code words (x1,%2,...,Tpn),x; € Fyn € N. If all code words have same length n,
then we say that C is a block code of length n. In this case C' C F™.

Definition 8.2 (Hamming distance) Ifw = (wy,ws,...,w,) andv = (v1,va,. ..

are in F™, we define the Hamming distance d(v,w) by

d(v,w) = [{i:v; £ wi}.

For example in F4, where F = GF(3), if v = (1,1,2,0) and w = (0,1,2,3). then
d(v,w) = 2. The following properties of Hamming distance are easy to prove:

1. d(v,w)= 0 if and only if v = w;
2. d(v,w) = d(w,v), for all v,w € F;
3. d(u,w) < d(u,v) + d(v,w), for all u,v,w € F.

Definition 8.3 (Minimum Distance) If C is a code we define the minimum
distance d(C) by

d(C) = min{d(v,w) : v,w € C,v # w}.

s Un)
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The following results plays an important role in detecting and correcting errors
when codes are transmitted via symmetric g-ary channels.

Theorem 8.1 Let C be a code with minimum distance d.
. Ifd>s+12>2, then C can be used to detect up to s errors.

. if d >2t+ 1, then C can be used to correct up to t errors.

Proof: i. Suppose v is transmitted and w received with less than or equal s
errors. Then d(v,w) < s <d—1< d and hence w ¢ C or w =v. Thus if we had
errors, it would be detected.

ii. Suppose v is transmitted and w received with less than or equal ¢ errors.
Then we have d(v,w) < t. Now suppose that u € C such that v # v, then we
have

d(u, w) + d(w,v) > d(u,v) >d>2t+1,

and hence
dlu,w) >2t+1—dw,w) >2t+1—-t=t+1.
Thus v is the closest codeword to w in C' and it could be picked. B

Corollary 8.2 If d = d(C), then C can detect at most d — 1 errors and correct
at most | 4] errors.

Proof: Folows from Theorem 8.1.

Theorem 8.3 (Singleton Bound) Let C be a g-ary code of length n and min-
inmum distance d. Then |C| < g™+,

Proof: We know that C' C F™ and hence clearly |C| < ¢"™. Let C’ be the set of
all code words of C' that their last d — 1 co-ordinates are removed. Then clearly
|C| = |C|, since all elements of C” are distinct due to the fact that no two code
words of C differed in less than d places. Now each cowords in C’ has length
n —d+ 1 and hence

‘C| _ ‘Cl| < qnfclJrl7

and thus the result. B

8.1 Linear Codes

From now on we regard F' as a finite field F; = GF(q) and our codes C to be
subspaces of V' = F™. If dim(C) = k and d(C) = d, then the code C is denoted
by [n, k, d], to represent this information.

Definition 8.4 (Support and Minimum Weight) LetV = F" v = (21, 22,23 . ..

V and S = {i:v; #0}. Then S is called the support of v (denoted by supp (v)),
the |S| is said to be the weight of v (denoted by wt (v)) If C is a linear code, the
minimum weight of C' is min{wt(c) : ¢ € C}.

Proposition 8.4 Let C = [n,k,d]. Then we have

L) €
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i. d=4d(C) is the minimum weight of C,
. d<n-—k+1.
Proof:

i. Clearly in V' = F™ we have d(v,w) = wt(v — w). Now since C' is a subspace
of V', for any v,w € C' we have v — w € C and hence the result.

ii. Since C is a subspace of V with dim(C) = k, we have |C| = ¢* and now by
Theorem 8.3 we have ¢* < ¢"~9*1. Hence k < n—d+1, so that d < n—k+1.

|

A constant word in a code is a codeword that is a scalar multiple of vector
all of whose coordinate entries are either 0 or 1.

The all-one vector will be denoted by 2, and is the constant vector of weight
the length of the code.

Two linear codes of the same length and over the same field are equivalent if
each can be obtained from the other by permuting the coordinate positions and
multiplying each coordinate position by a non-zero field element.

They are isomorphic if they can be obtained from one another by permuting
the coordinate positions.

An automorphism of a code is any permutation of the coordinate positions
that maps codewords to codewords. An automorphism thus preserves each weight
class of C.

A binary code with all weights divisible by 4 is said to be a doubly-even
binary code.

Definition 8.5 (Dual of a Code) For any code C, the dual code C* is the
orthogonal subspace under the standard inner product. That is

Ct={veF":<v,¢c>=0 forallce C}.

If C C C*, then we say C is self-orthogonal. If C = C*, then we say that C
is self-dual. The hull of C is given by Hull(C) = C N C+.

Definition 8.6 (Generating Matrix) . If C is a g-ary code of dimension k
and of length n, then a generating matriz G for C is a k x n matrix obtained from
any basis of C.

By performing elementary row operations on G, we can reduce it into a row
echelon form G’ = [I|A] (standard form), where A is a k x (n — k) matrix.
Clearly G’ is a generating matrix for a code which is equivalent (and isomorphic)
to C.

Proposition 8.5 If C is a [n, k] code, then C* is a [n,n — k] code.

Proof: Let G be a generating matrix for C. Then (v)G' € F* for all v € F"
and G? can be regarded as a linear transformation from F™ onto F*. Clearly
ker(G') = C+ and hence F"/Ct = F¥ that is dim(F") — dim(C+) = dim(F%).
Hence n = dim(C) + dim(C+). B
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Exercise 8.1 Let C' =< 3 > be the code generated by all one vector 7 inside F'™.
1. What is the standard form for C?
2. Show that C* is a [n,n — 1,2] code.

3. Show that C' is generated by the vectors with exactly 2 non-zero entries 1
and —1.

4. Show that the standard form for C* is [I,,_;|B], where B is the column
matrix with —1 entries.

Definition 8.7 (Parity Check Matrix) If C is a code, then any generating
matriz for C* is said to be a parity-check matriz for C.

Proposition 8.6 If G and H are generating and parity-check matrices of a code
C, then we have GH* = Oy (n—ky and ¢ € C if and only if cH'=0 if and only if
Hct = 0.

Proof: Follows from the fact that C and C* are orthogonal and H is a gener-
ating matriz for C+-. A

Note that if G = [I|A] is a generating matrix for a code C of dimension k in F™,
then H = [—A"|I,,_;] is a parity-check matrix for C. A generating matrix in its
standard form simplifies the encoding. For example if we encode u € F¥ by G =
[Ix]|A], we compute uG and we will get v = (ug, U2, ..., Up, i1, Tht2 .-, Tn),
where u = (ug,ug, ..., u).

Exercise 8.2 The smallest Hamming code is a binary code [7,4, 3], which is a
single error correcting code. It has the following generating matrix (in standard
form): G = [I4]|A] where

A:

—_ = O
O = O =

1
1
0
1
Find a parity-check matrix for it.

8.2 Codes from Designs

The code Cr of the design D over the finite field F' is the space spanned by
the incidence vectors of the blocks over F. If we take F' to be a prime field
F, = GF(p), in which case we write also C}, for Cr, and refer to the dimension
of C,, as the p-rank of D. If the point set of D is denoted by P and the block set
by B, and if Q is any subset of P, then we will denote the incidence vector of Q
by v©. Thus Cp = (v?| B € B), and is a subspace of F”, the full vector space
of functions from P to F'.

Example 8.1 Let D be the 2-design representing the Fano plane. Then using
the Exercise 7.2 we can easily see that

i. If F is a field of characteristic p with p ¢ {2,3}, then Cp(D) = F7 with
Aut(C) = 57.
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ii. Co(D) = 17,4, 3]z (the smallest hamming code) with Aut(C) =2 PGL(3,2) =
PSL(2,7) =2 PSL(3,2), the simple group of order 168.

iii. O3(D) =< 3>+=17,6,2]3, with Aut(C) = S;.

Terminology for graphs is standard: our graphs are undirected, the valency of
a vertex is the number of edges containing the vertex. A graph is regular if all
the vertices have the same valence, and a regular graph is strongly regular of
type (n, k, \, p) if it has n vertices, valence k, and if any two adjacent vertices are
together adjacent to A vertices, while any two non-adjacent vertices are together
adjacent to p vertices.

9 Method 1

Construction of 1-Designs and Codes from Maximal Subgroups: In this
section we consider primitive representations of a finite group G. Let G be a
finite primitive permutation group acting on the set 2 of size n. We can consider
the action of G on Q x Q given by (o, 5)? = (a9,49) for all a, €  and all
g € G. An orbit of G on Q x § is called an orbital. If A is an orbital, then
A* = {(a, B) : (B,a) € A} is also an orbital of G on © x €, which is called the
paired orbital of A. We say that A is self-paired if A = A*.

Now Let a € Q, and let A # {a} be an orbit of the stabilizer M = G, of
a. Tt is not difficult to see that A given by A = {(«,8) : 6 € A,g € G} is an
orbital. We say that A is self-paired if and only if A is a self paired orbital. Also
note that the primitivity of G on €2 implies that M is a maximal subgroup of G.

If M = G, has only three orbits {a}, A and A’ on 2, then we say that G is
a rank-3 permutation group.

Our construction for the symmetric 1-designs is based on the following results,
mainly Theorem 9.1 below, which is the Proposition 1 of [18] with its corrected
version in [19]:

Theorem 9.1 Let G be a finite primitive permutation group acting on the set )
of sizen. Let o € Q, and let A # {a} be an orbit of the stabilizer G, of . If

B={A%: geG)

and, given § € A,
E={{a, 0} : g G,

then D = (Q, B) forms a 1-(n,|A|,|A|) design with n blocks. Further, if A is a
self-paired orbit of Gy, thenT' = (2, ) is a regular connected graph of valency |A|,
D is self-dual, and G acts as an automorphism group on each of these structures,
primitive on vertices of the graph, and on points and blocks of the design.

Proof: We have |G| = |[A%||Gal, and clearly GA D G,. Since G is primitive on
Q, G, is maximal in G, and thus Ga = G, and |AY| = |B| = n. This proves
that we have a 1-(n, |A[, |Al]) design.

Since A is self-paired, I is a graph rather than only a digraph. In I'" we notice
that the vertices adjacent to « are the vertices in A. Now as we orbit these pairs
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under G, we get the nk ordered pairs, and thus nk/2 edges, where k = A. Since
the graph has G acting, it is clearly regular, and thus the valency is k as required,
i.e. the only vertices adjacent to « are those in the orbit A. The graph must be
connected, as a maximal connected component will form a block of imprimitivity,
contradicting the group’s primitive action.

Now notice that an adjacency matrix for the graph is simply an incidence
matrix for the 1-design, so that the 1-design is necessarily self-dual. This proves
all our assertions. W

Note that if we form any union of orbits of the stabilizer of a point, including
the orbit consisting of the single point, and orbit this under the full group, we will
still get a self-dual symmetric 1-design with the group operating. Thus the orbits
of the stabilizer can be regarded as “building blocks”. Since the complementary
design (i.e. taking the complements of the blocks to be the new blocks) will have
exactly the same properties, we will assume that our block size is at most v/2.

In fact this will give us all possible designs on which the group acts primitively
on points and blocks:

Lemma 9.2 If the group G acts primitively on the points and the blocks of a
symmetric 1-design D, then the design can be obtained by orbiting a union of
orbits of a point-stabilizer, as described in Theorem 9.1.

Proof: Suppose that G acts primitively on points and blocks of the 1-(v, k, k)
design D. Let B be the block set of D; then if B is any block of D, B = BE. Thus
|G| = |B||GBl|, and since G is primitive, Gp is maximal and thus Gg = G, for
some point. Thus G, fixes B, so this must be a union of orbits of G,. B

Lemma 9.3 If G is a primitive simple group acting on €2, then for any a € €,
the point stabilizer G, has only one orbit of length 1.

Proof: Suppose that G, fixes also 8. Then G, = Gg. Since G is transitive,
there exists g € G such that a9 = 3. Then (G,)? = Gas = Gg = G4, and thus
g € Ng(G,) = N, the normalizer of G, in G. Since G, is maximal in G, we have
N =G or N = (G,. But G is simple, so we must have N = G, so that g € G,
andso f=a. R

We have considered various finite simple groups, for example Ji; Jo; M€L;
PSpom(q), where ¢ is a power of an odd prime, and m > 2; Coy; HS and Ru.
For each group, using Magma [4], we construct designs and graphs that have the
group acting primitively on points as automorphism group, and, for a selection
of small primes, codes over that prime field derived from the designs or graphs
that also have the group acting as automorphism group. For each code, the code
automorphism group at least contains the associated group G.

To aid in the classification, if possible, the dimension of the hull of the design
for each of these primes were found. Then we took a closer look at some of the
more interesting codes that arose, asking what the basic coding properties were,
and if the full automorphism group could be established.

It is well known, and easy to see, that if the group is rank-3, then the graph
formed as described in Theorem 9.1 will be strongly regular. In case the group
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is not of rank 3, this might still happen, and we examined this question also for
some of the groups we studied.

A sample of our results for example for J; and J; is given below, but the full
set can be obtained at Jenny Key’s web site under the file “Janko groups and
designs”:

http://www.ces.clemson.edu/ keyj

Clearly the automorphism group of any of the codes will contain the auto-
morphism group of the design from which it is formed. We looked at some of
the codes that were computationally feasible to find out if the groups J; and J;
formed the full automorphism group in any of the cases when the code was not
the full vector space. We first mention the following lemma:

Lemma 9.4 Let C be the linear code of length n of an incidence structure Z over
a field F. Then the automorphism group of C is the full symmetric group if and
only if C = F"™ or C = Fy*.

Proof: Suppose Aut(C) is S,,. C is spanned by the incidence vectors of the blocks
of Z; let B be such a block and suppose it has k points, and so it gives a vector of
weight k in C. Clearly C contains the incidence vector of any set of k points, and
thus, by taking the difference of two such vectors that differ in just two places, we
see that C' contains all the vectors of weight 2 having as non-zero entries 1 and
—1. Thus C = F3* or F™. The converse is clear.ll

Huffman [15] has more on codes and groups, and in particular, on the possi-
bility of the use of permutation decoding for codes with large groups acting. See
also Knapp and Schmid [26] for more on codes with prescribed groups acting.

Most of the codes we looked at were too large to find the automorphism group,
but we did find some of, through computation with Magma. Note that we could
in some cases look for the full group of the hull, and from that deduce the group
of the code, since Aut(C) = Aut(C+) C Aut(C NCH).

9.1 Jl, J2 and 002

In this subsection we give a brief discussion on the application of Method 1 (dis-
cussed in Section 9) to the sporadic simple groups Ji, J2 and Cos. For full details
the readers are referred to [18], [19], [20] and [32].

9.1.1 Computations for J; and J,

The first Janko sporadic simple group J; has order 175560 = 23 x3x5x7x11x 19
and it has seven distinct primitive representations, of degree 266, 1045, 1463, 1540,
1596, 2926, and 4180, respectively (see Table 1 and [5, 10]). For each of the seven
primitive representations, using Magma, we constructed the permutation group
and formed the orbits of the stabilizer of a point. For each of the non-trivial
orbits, we formed the symmetric 1-design as described in Theorem 9.1. We took
set of the {2,3,5,7,11} of primes and found the dimension of the code and its hull
for each of these primes. Note also that since 19 is a divisor of the order of Ji, in
some of the smaller cases it is worthwhile also to look at codes over the field of
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order 19. We also found the automorphism group of each design, which will be the
same as the automorphism group of the regular graph. Where computationally
possible we also found the automorphism group of the code.

Conclusions from our results are summarized below. In brief, we found that
there are 245 designs formed in this manner from single orbits and that none of
them is isomorphic to any other of the designs in this set. In every case the full
automorphism group of the design or graph is Jj.

No. Order | Index | Structure
Max[1] 660 266 PSL(2,11)
Max[2] | 168 | 1045 23:7:3
Max|[3] 120 1463 2 X As
Max[4] 114 1540 19:6
Max|[5] 110 1596 11:10
Max[ﬁ] 60 2926 D5 X D10
Max|[7] 42 4180 7:6

Table 1: Maximal subgroups of J;

In Table 2, the first column gives the degree, the second the number of orbits,
and the remaining columns give the length of the orbits of length greater than
1, with the number of that length in parenthesis behind the length in case there
is more than one of that length. The pairs that had the same code dimensions
occurred as follows: for degrees 266, 1045 and 1596, there were no such pairs; for
degree 1463 there were two pairs, both for orbit size 60; for degree 1540, there
were two pairs, for orbit size 57 and 114 respectively; for degree 2926 there was
one pair for orbit size 60; for degree 4180 there were 12 pairs, for orbit size 42.

In summary then, we have the following:

Proposition 9.5 If G is the first Janko group Jy, there are precisely 245 non-
isomorphic self-dual 1-designs obtained by taking all the images under G of the
non-trivial orbits of the point stabilizer in any of G’s primitive representations,
and on which G acts primitively on points and blocks. In each case the full au-
tomorphism group is Ji. FEvery primitive action on symmetric 1-designs can be

’ Degree H # \ length \ \ \ \ ‘
266 5 132 110 12 11
1045 11 | 168(5) )
1463 22 | 120(7) | 60(9) | 20(2) | 15(2) | 12
9) )
)

(2)
1540 || 21 | 114( @) ] 19
1596 || 19 | 110(13) | 55(2) | 22(2) | 11
(5)
(4)

2926 || 67 | 60(34) | 30(27) | 15(5
4180 || 107 | 42(95) | 21(6) | 14(4

7

Table 2: Orbits of a point-stabilizer of J;
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obtained by taking the union of such orbits and orbiting under G.

We tested the graphs for strong regularity in the cases of the smaller degree,
and did not find any that were strongly regular. We also found the designs and
their codes for some of the unions of orbits in some cases. We found that some
of the codes were the same for some primes, but not for all.

The second Janko sporadic simple group Jo has order has order 604800 =
27 x 3% x 52 x 7, and it has nine primitive permutation representations (see Table
3), but we did not compute with the largest degree. Thus our results cover only
the first eight. Owur results for J, are different from those for J;, due to the
existence of an outer automorphism. The main difference is that usually the full
automorphism group is Jo, and that in the cases where it was only Jy, there would
be another orbit of that length that would give an isomorphic design, and which,
if the two orbits were joined, would give a design of double the block size and
automorphism group Jy. A similar conclusion held if some union of orbits was
taken as a base block.

No. Order Index Structure
Max[1] 6048 100 PSU(3,3)
Max[2] 2160 280 3 PGL(2,9)
Max[3] 1920 315 214 A5
Max[4] 1152 525 22+4:(3 x S3)
Max[5] 720 840 Ay x As
Max[6] 600 1008 As x Dqg
Max[7] 336 1800 PSL(2,7):2
Max(8] 300 2016 52:D1o
Max[9] 60 10080 As

Table 3: Maximal subgroups of J;

From these eight primitive representations, we obtained in all 51 non-isomorphic
symmetric designs on which J, acts primitively. Table 4 gives the same informa-
tion for Jy that Table 2 gives for J;. The automorphism group of the design in

’ Degree H # \ length \ \ \ \ \ ‘
100 3 63 36
280 4 135 108 36
315 6 160 80 32(2) 10
525 6 | 192(2) 96 32 12
840 7 360 240 180 24 20 | 15
1008 11 300 150(2) | 100(2) | 60(2) | 50 | 25 12
1800 18 336 168(6) | 84(3) | 42(3) | 28 | 21 | 14(2)
2016 18 | 300(2) | 150(6) | 75(5) | 50(2) | 25 | 15

Table 4: Orbits of a point-stabilizer of J5 (of degree < 2016)
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each case was Jp or Jo. Where Jo was the full group, there is another copy of
the design for another orbit of the same length. This occurred in the following
cases: degree 315, orbit length 32; degree 1008, orbit lengths 60, 100 and 150;
degree 1800, orbit lengths 42, 42, 84 and 168; degree 2016, orbit lengths 50, 75,
75, 150, 150, and 300. We note again that the p-ranks of the design and their hulls
gave an initial indication of possible isomorphisms and clear non-isomorphisms,
so that only the few mentioned needed be tested. This reduced the computations
tremendously.

We also found three strongly regular graphs (all of which are known: see
Brouwer [7]): that of degree 100 from the rank-3 action, of course, and two more
of degree 280 from the orbits of length 135 and 36, giving strongly regular graphs
with parameters (280,135,70,60) and (280,36,8,4) respectively. The full automor-
phism group is .J; in each case. We have not checked all the other representations
but note that this is the only one with point stabilizer having exactly four orbits.
Note that Bagchi [3] found a strongly regular graph with J acting.

In each of the following we consider the primitive action of Jy on a design
formed as described in Method 1 from an orbit or a union of orbits, and the codes
are the codes of the associated 1-design.

1. For J, of degree 100, J5 is the full automorphism group of the design with
parameters 1-(100,36,36), and it is the automorphism group of the self-
orthogonal doubly-even [100, 36, 16]> binary code of this design.

2. For J, of degree 280, .J; is the full automorphism group of the design with
parameters 1-(280, 108, 108), and it is the automorphism group of the self-
orthogonal doubly-even [280, 14, 108] binary code of this design. The weight
distribution of this code is

<0, 1>, <108, 280>, <128, 1575>, <136, 2520>, <140, 7632>,
<144, 2520>, <152, 1575>, <172, 280>, <280, 1>

Thus the words of minimum weight (i.e. 108) are the incidence vectors of
the design.

3. For J, of degree 315, J is the full automorphism group of the design with
parameters 1-(315,64,64) (by taking the union of the two orbits of length
32), and it is the automorphism group of the self orthogonal doubly-even
[315, 28, 64]2 binary code of this design. The weight distribution of the code
is as follows:

<0, 1>,<64, 315>,<96, 6300>,<104, 25200>,<112, 53280>, <120,
242760>,<124, 201600>,<128, 875700>,<132, 1733760>, <136,
4158000>,<140, 5973120>,<144, 12626880>,<148, 24232320>, <152,
35151480>,<156, 44392320>,<160, 53040582>, <164, 41731200>,<168,
28065120>,<172, 13023360>,<176, 2129400>, <180, 685440>,<184,
75600>,<192, 10710>,<200, 1008>

Thus the words of minimum weight (i.e. 64) are the incidence vectors of the
blocks of the design.
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Furthermore, the designs from the two orbits of length 32 in this case, i.e.
1-(315, 32, 32) designs, each have Jy as their automorphism group. Their bi-
nary codes are equal, and are [315, 188]5 codes, with hull the 28-dimensional
code described above. The automorphism group of this 188-dimensional
code is again J,. The minimum weight is at most 32. This is also the
binary code of the design from the orbit of length 160.

4. For Jo of degree 315, Jy is the full automorphism group of the design
with parameters 1-(315,160, 160) and it is the automorphism group of the
[315,265]5 5-ary code of this design. This code is also the 5-ary code of the
design obtained from the orbit of length 10, and from that of the orbit of
length 80, so we can deduce that the minimum weight is at most 10. The
hull is a [315, 15, 1555 code and again with J5 as full automorphism group.

5. For Jy of degree 315, Jo is the full automorphism group of the design with
parameters 1-(315, 80, 80) from the orbit of length 80, and it is the automor-
phism group of the self-orthogonal doubly-even [315, 36, 80]2 binary code of
this design. The minimum words of this code are precisely the 315 incidence
vectors of the blocks of the design.

In [20] we used the construction described in Method 1 to obtain all irreducible
modules of J; (as codes) over the prime fields Fy, F3,F5. We also showed that
most of those of Jo can be represented in this way as the code, the dual code or
the hull of the code of a design, or of codimension 1 in one of these. For Js, if no
such code was found for a particular irreducible module, then we checked that it
could not be so represented for the relevant degrees of the primitive permutation
representations up to and including 1008. In summary, we obtained:

Proposition 9.6 Using the construction described in Method 1 above (see The-
orem 9.1 and Lemma 9.2), taking unions of orbits, the following constructions of
the irreducible modules of the Janko groups Jy and Jo as the code, the dual code
or the hull of the code of a design, or of codimension 1 in one of these, over IF,
where p = 2,3,5, were found to be possible:

1. Ji: all the seven irreducible modules for p =2,3,5;

2. Ja: dll for p= 2 apart from dimensions 12,128; all for p = 3 apart from di-
mensions 26,42, 114, 378; all for p = 5 apart from dimensions 21,70, 189, 300.
For these exclusions, none exist of degree < 1008.

Note: 1. We do not claim that we have all the constructions of the modular
representations as codes; we were seeking mainly existence.

We give below three self-orthogonal binary codes of dimension 20 invariant
under J; of lengths 1045, 1463, and 1540. These are irreducible by [16] or Magma
data. In all cases the Magma simgps library is used for J; and Js.

1. J; of Degree 1045
[1045, 20, 456]2 code; dual code: [1045,1025, 4],
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\\Orbit lengths of stabilizer of a point:

[1, 8, 28, 56, 56, 56, 168, 168, 168, 168, 168 ];
\\Orbits chosen: ##1,3,5,10,11
\\Defining block is the union of these, length 421
1-(1045, 421, 421) Design with 1045 blocks
\\C is the code of the design, of dimension 21
\\The 20-dimensional code is Ch:= C meet Dual(C) =Hull(C)
> WeightDistribution(Ch);

[ <0, 1>, <456, 3080>, <488, 29260>, <496, 87780>, <504, 87780>,
<612, 36575>, <5620, 299706>, <528, 234080>, <b36, 175560>, <544,
58520>, <552, 14630>, <560, 19019>, <608, 1540>, <624, 1045> ].
Those of weight 456, 504, 544, 552, 624, 608 are single orbits; the
others split.
>WeightDistribution(C);

[ <0, 1>, <421,1405>, <437, 1540>, <456, 3080>, <485,19019>,

<488, 29260>, <493, 14630>, < 496, 87780>, <501, 58520>,
<504, 87780>, <509, 175560>, <512, 36575>, <517, 234080>, <520,
299706>, <5625, 299706>, <528, 234080>, <533, 36575>, <536, 175560>,
<5641, 87780>, <b44, 58520>, <549, 87780>, <552, 14630>, <557,29260>,
<560, 19019>, <589, 3080>, <608, 1540>, <624, 1045>, <1045, 1> ].

2. J; of Degree 1463
[1463, 20, 608]2 code; dual code: [1463,1443, 3],

\\Orbit lengths of stabilizer of a point:

[1, 12, 15, 15, 20, 20, 60, 60, 60, 60, 60, 60, 60, 60, 60, 120,
120, 120, 120, 120, 120, 120 ]

\\Orbits chosen ##18,21

\\Defining block is union of these, of length 240

1-(1463, 240, 240) Design with 1463 blocks

\\C is the code of the design, of dimension 492

\\The 20-dimensional code is Ch:= C meet Dual(C) =Hull(C)

WD(Ch) ;

[ <0, 1>, <608, 1540>, <632, 2926>, <640, T315>, <688, 29260>, <696,
29260>, <712, 87780>, <720, 89243>, <728, 311410>, <736, 87780>,
<744, 175560>, <752, 222376>, <760, 3080>, <784, 1045> ]

3. Jp of Degree 1540
[1540, 20, 640]2 code; dual code: [1540, 1520, 4],

\\Orbit lengths of stabilizer of a point:

[ 1, 19, 38, 38, 38, 38, 57, 57, 57, 57, 57, 57, 114, 114, 114, 114,
114, 114, 114, 114, 114 ]

\\Orbits chosen ##7,13

\\Defining block is the union of these, length 171

1-(1540, 171, 171) Design with 1540 blocks

\\C is the code of the design, of dimension 592

\\The code of dimension 20 is Ch:=C meet Dual(C)

WD(Ch); [ <0, 1>, <640, 1463>, <728, 33440>, <736, 58520>, <760,
311696>, <768, 358435>, <792, 175560>, <800, 105336>, <856, 3080>,
<896, 1045> ]



9 METHOD 1 61

We now look at the smallest representations for J;. We have not been able
to find any of dimension 12, and none can exist for degree < 1008, as we have
verified computationally by examining the permutation modules. We give below
four representations of Jy acting on self-orthogonal binary codes of small degree
that are irreducible or indecomposable codes over Js. The full automorphism
group of each of these codes is Js.

1. Js of Degree 100, dimension 36
[100, 36, 16]5 code; dual code: [100, 64, 8],

\\Orbit lengths of stabilizer of a point:

[1, 36, 63] 1-(100, 36, 36) Design with 100 blocks

\\ Orbit #2 gave a block of the design

[ <0, 1>, <16, 1575>, <24, 105000>, <28, 1213400>, <32, 29115450>,
<36, 429677200>, <40, 2994639480>, <44, 10672216200>, <48,
20240374350>, <52, 20217640800>, <56, 10675819800>, <60,
3004193640>, <64, 422248725>, <68, 30819600>, <72, 1398600>, <76,
12600>, <80, 315> ]

This code C' = C34 of dimension 36 is irreducible, by Magma. The dual code
Cgs = C* has an invariant subcode Cg3 of dimension 63 that is spanned
by the weight-8 vectors and that contains 3 and Csg. All these codes are
indecomposable, by Magma. The full automorphism group of this code is
Jo.

2. Jy of Degree 280, dimension 13
[280, 13, 128]5 code; dual code: [280,267, 4],

\\Orbit lengths of stabilizer of a point:

[1, 36, 108, 135]

\\Orbit #3 gave a block of the design

1-(280,108,108) Design with 280 blocks

\\Weight distribution of its 14-dimensional binary code

[ <0, 1>, <108, 280>, <128, 1575>, <136, 2520>, <140, 7632>, <144,

2520>, <152, 1575>, <172, 280>, <280, 1> ] Dual code: [280,266,4]
\\Weight distribution of reducible but indecomposable 13-dimensional code
[ <0, 1>, <128, 1575>, <136, 2520>, <144, 2520>, <152, 1575>, <280,

1> ]

This code has the invariant subcode of dimension 1 generated by the all-
one vector, so it is reducible. However, we checked the orbits of all the
other words and found that there are no other invariant subcodes. It is thus
indecomposable. The full automorphism group of these codes is Js.

3. Jo of Degree 315, dimension 28
[315, 28, 64]5 code; dual code: [315,287, 3],

\\Orbit lengths of stabilizer of a point:
[ 1, 10, 32, 32, 80, 160 ]
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\\Orbits ## 3 and 4 chosen

1-(315, 64, 64) Design with 315 blocks

\\Weight distribution of its 28-dimensional binary code

[ <0, 1>, <64, 315>, <96, 6300>, <104, 25200>, <112, 53280>, <120,
242760>, <124, 201600>, <128, 875700>, <132, 1733760>, <136,
4158000>, <140, 5973120>, <144, 12626880>, <148, 24232320>, <152,
35151480>, <156, 44392320>, <160, 53040582>, <164, 41731200>, <168,
28065120>, <172, 13023360>, <176, 2129400>, <180, 685440>, <184,
75600>, <192, 10710>, <200, 1008> ]

The code is an irreducible module over J;, by Magma. The full automor-
phism group of this code is Js.

4. J, of Degree 315, dimension 36
[315, 36, 80] code; dual code: [315,279, 5],

\\Orbit lengths of stabilizer of a point:

[ 1, 10, 32, 32, 80, 160 ]

\\chose the orbit of length 80

1-(315, 80, 80) Design with 315 blocks 36 =Dim(C) dim hull 36
//Weight distribution of the 36-dimensional code

[ <0, 1>, <80, 315>, <84, 1800>, <96, 9450>, <100, 50400>, <108,
126000>, <112, 84150>, <116, 466200>, <120, 4798920>, <124,
10987200>, <128, 54432000>, <132, 180736920>, <136, 606475800>,
<140, 1792977480>, <144, 3988438335>, <148, 6923044800>, <152,
10151396640>, <156, 12278475300>, <160, 11844516600>, <164,
9314451720>, <168, 6136980600>, <172, 3360636720>, <176,
1436425200>, <180, 459183200>, <184, 132924960>, <188, 32715900>,
<192, 7006125>, <196, 1800000>, <200, 126000>, <204, 113400>, <208,
75600>, <216, 12600>, <220, 6300>, <252, 100> ]

The code is an irreducible module over J;, by Magma. The full automor-
phism group of this code is Js.

For F one of the fields ), for p = 2,3,5 and n the degree of the permutation
representation, in [20] we demonstrated some cases where the full space F™ can be
completely decomposed into G-modules, where G = Ji, Js, using codes obtained
by our construction. In all cases (), denotes an indecomposable linear code of
dimension m over the relevant field and group. If the codes were irreducible they
were obtained according to our method and were listed in [20]. For example

e For J; of degree 1045 over F3, the full space can be completely decomposed
into Ji-modules, that is:

F04 = Crg @ Ci12 @ Csg0 ® Caos @ Fay,

where all but Cygg are irreducible. Cygg has composition factors of dimen-
sions 20, 112, 1, 76, 20, 1, 112, 20, 1, 1, 112, 20. Also

S = Socle(F3**%) = F23 @ Cag @ Cr6 @ Cr12 ® Csgo,

with dim(S) = 569.
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e For J, of degree 315 over Fy we have:
F3'% = C160 ® Cr54 @ Fay,

where Cigg is irreducible and Ci54 @ Fog = Cfg;o is the binary code of the
1-(315, 33, 33) design from orbits #1 and #4. (Note that F1°° and F3% are
indecomposable as Jo modules.)

e For J, of degree 100 over F3 we have:

F309 = C36 @ Co3 @ F33.

e For J, of degree 280 over F3 we have:
F$%0 = Cg3 @ Ca16 ® Fy,

where Cy1¢ is the code of the 1-(280, 135, 135) design obtained from the orbit
4 4.

e for J, of degree 525 over F5 we have:
F2? = C175 @ Cro0 © Caso,

where C175 is irreducible and Cigg is the dual of the code C of the 1-
(525,140, 140) design obtained from the orbits #2, #3 , #4, and Ca59 =
C N Css.

9.1.2 The Conway group Cos

The Leech lattice is a certain 24-dimensional Z submodule of the Euclidean space
R?* whose automorphism group is the double cover 2'Co; of the Conway group
Cop. The Conway groups Cos and Cog are stabilizers of sublattices of the Leech
lattice.

The subgroup structure of Cog is discussed in Wilson [40] and [39] using the
following information. The group Cos admits a 23-dimensional indecomposable
representation over GF(2) obtained from the 24-dimensional Leech lattice by
reducing modulo 2 and factoring out a fixed vector. The action of Coy on the
vectors of this 23-dimensional indecomposable GF'(2) module (say M) produces
eight orbits, with stabilizers isomorphic to Coy, Ug(2):2, 210:Msy:2, ML, HS:2,
U4(3).Ds, 2?8:58 and Moss, respectively. The 23-dimensional indecomposable
GF(2) module M contains an irreducible GF(2)-submodule N of dimension 22.
We use TABLE III(a) given by Wilson in [39] to produce Table 5, which gives
the orbit lengths and stabilizers for the actions of Coy on M and N respectively.

On the other hand, reduction modulo 2 of the 23-dimensional ordinary irre-
ducible representation results in a decomposable 23-dimensional GF(2) represen-
tation. In [40] Wilson showed that Cos has exactly eleven conjugacy classes of
maximal subgroups. One of these subgroups is the group Us(2):2 of index 2300.
In Proposition 9.7, using this maximal subgroup, we construct the decomposable
23-dimensional GF(2)-representation as the binary code Cgga of dimension 23 in-
variant under the action of Cos. The action of Coy on Cggy produces 12 orbits
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M-Stabilizer ~M-Orbit length || N-Stabilizer ~N-Orbit length
Cog 1| Coq 1
Us(2) : 2 2300 || Ug(2) : 2 2300
MeL 47104

210: V912 46575 || 219:Mo9:2 46575
HS:2 476928 || HS:2 476928
U4(3).Dg 1619200 || U4(3).Ds 1619200
Mos 4147200

247885 2049300 || 24+%:55 2049300

Table 5: Action of Cos on M and N

with stabilizers isomorphic to Cog (2 copies), Ug(2):2 (2 copies), 210:My:2 (2
copies), HS:2 (2 copies), Uy(3).Ds (2 copies), 217 : Sg (2 copies) respectively.
Furthermore, Cggo contains a binary code Cis0g of dimension 22 invariant and
irreducible under the action of Coy. Notice that the 2-modular character table
of Cog is completely known (see [36]) and follows from it that the irreducible
22-dimensional GF'(2) representation is unique and 22 is the smallest dimension
for any non-trivial irreducible GF(2) module.

Here we examine some designs D; and associated binary codes C; constructed
from a primitive permutation representation of degree 2300 of the sporadic simple
group Cog. For the full detail the readers are encouraged to see [32].

We used Method 1 and constructed self-dual symmetric 1-designs D; and
binary codes C;, where i is an element of the set {891, 892, 1408, 1409, 2299}, from
the rank-3 primitive permutation representation of degree 2300 of the sporadic
simple group Coy of Conway. The stabilizer of a point « in this representation
is a maximal subgroup isomorphic to Ug(2):2, producing orbits {a}, Ay, Ay of
lengths 1, 891 and 1408 respectively.

The self-dual symmetric 1-designs D; are constructed from the sets A, {a} U
Aq, Ay, {a} U Ay, and Ay U Ay, respectively. We let Q = {a} U Ay U As.

We proved the following result:

Proposition 9.7 Let G be the Conway group Cos and D; and C; where i is in
the set {891,892,1408, 1409, 2299} be the designs and binary codes constructed
from the primitive rank-3 permutation action of G on the cosets of Ug(2):2. Then
the following holds:

(Z) Aut(Dggl) = Aut(Dggg) = Aut(D1408) =
Aut(D1409) = Aut(ngg) = Aut(01408) = COQ.

(ZZ) dim(CSQZ) - 23, dim(01408) = 22’
Csoa D Ci40s and Cog acts irreducibly on Chya0s.
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(iii) Cgo1 = C1a00 = C2209 = Va300(GF(2)).

(Z’U) Aut('Dgggg) = Aut(0891) = Aut(C1049) =
Aut(Caa99) = Sa300-

The proof of the proposition follows from a series of lemmas. In fact we showed
that the codes Cggo and Ciags are of types [2300,23,892]2 and [2300, 22, 1024],
respectively. Furthermore

Cgo2 = (C1408,7) = Craos U{w + 3 : w € Cra0s}

= Cla08 ® (7),

where 7 denotes the all-one vector. Let W; denote the set of all codewords of Cggo
of weight [ and let A; be the size of W;. Then clearly W; + {3} = Wasp0_; C Csoo
and |[W;| = A; = [Wasoo—i] = Aazpo—i. We found the weight distribution of
Cs92 and then the weight distribution of Cf40g follows. We also determined the
structures of the stabilizers (Cog).,,, for all nonzero weight I, where w; € C40s is
a codeword of weight I. The structures of the stabilizers (Cog),, for Cggs follows
clearly from those of Cf40s-

We also showed that the code Ci40g is the 22 dimensional irreducible repre-
sentation of Coy over GF(2) contained in the 23-dimensional decomposable Cggs.
It is also contained in the 23-dimensional indecomposable representation of Cog
over GF(2) discussed in ATLAS [5] and Wilson [39].

We should also mention that computation with Magma shows the codes over
some other primes, in particular, p = 3 are of some interest. In a separate paper
we plan to deal with the ternary codes invariant under Cog [35].

10 Method 2

Construction of 1-Designs and Codes from Maximal Subgroups and
Conjugacy Classes of Elements: In this section we assume G is a finite simple
group, M is a maximal subgroup of G, nX is a conjugacy class of elements of
order n in G and g € nX. Thus Cy = [g] = nX and [nX| = |G : Cg(g)|.

As in Section 6 let xar = x(G|M) be the permutation character afforded by
the action of G on £, the set of all conjugates of M in G. Clearly if g is not
conjugate to any element in M, then x(g) = 0.

The construction of our 1-designs is based on the following theorem.

Theorem 10.1 Let G be a finite simple group, M a mazimal subgroup of G and
nX a conjugacy class of elements of order n in G such that M NnX # 0. Let
B={(MmmX)¥ly € G} and P =nX. Then we have a 1—(|InX|,|MNnX]|, xar(g))
design D, where g € nX. The group G acts as an automorphism group on D,
primitive on blocks and transitive (not necessarily primitive) on points of D.

Proof: First note that
B={MYNnX|y € G}.

We claim that MY NnX = M NnX if and only if y € M or nX = {1g}. Clearly
ify e M or nX = {lg}, then MY NnX = M NnX. Conversely suppose there
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exits y ¢ M such that MY NnX = M NnX. Then maximality of M in G implies
that G =< M,y > and hence M* NnX = M NnX for all z € G. We can deduce
that nX C M and hence < nX >< M. Since < nX > is a normal subgroup of G
and G is simple, we must have < nX >= {14}. Note that maximality of M and
the fact < nX >< M, excludes the case < nX >= G.

From above we deduce that

b=|Bl=|9Q=[G: M].
If B € B, then

k k
1
k= 1B = 1M 0nX| = 3 el = M3 s
i=1 i=1 M

where x1, x2, ..., r), are the representatives of the conjugacy classes of M that fuse
to g.

Let v = |P| = [nX| =[G : Cg(g)]. Form the design D = (P, B,T), with point
set P, block set B and incidence Z given by xZB if and only if x € B. Since the
number of blocks containing an element x in P is A = xar(x) = xar(g), we have
produced a 1 — (v, k, A) design D, where v = |nX|, k = |M NnX| and A = x,(9).

The action of G on blocks arises from the action of G on 2 and hence the
maximality of M in G implies the primitivity. The action of G on nX, that is on
points, is equivalent to the action of G on the cosets of Cg(g). So the action on
points is primitive if and only if Cg(g) is a maximal subgroup of G. B

Remark 10.1 Since in a 1 — (v, k, \) design D we have kb = \v, we deduce that

xa(g) x [nX|
k=IMnNnX|=""———"—
| nX| [G: M]
Also note that 25, the complement of D, is 1 — (v,v — k, :\) design, where A=
A x 2=k,
2

Remark 10.2 If A = 1, then D is a 1 — (|[nX|, k,1) design. Since nX is the
disjoint union of b blocks each of size k, we have Aut(D) = Sk 1Sy = (Sk)® : Sp.
Clearly In this case for all p, we have C = Cp(D) = [InX]|, b, k], with Aut(C) =
Aut(D).

Remark 10.3 The designs D constructed by using Theorem 12 are not symmetric
in general. In fact D is symmetric if and only if

b=|B=v=I[P|<[G: M| =[nX| & [G:M]=[G:Calg)] & [M|=[Ca(g)]-

10.1 Some 1-designs and Codes from A;

A7 has five conjugacy classes of maximal subgroups, which are listed in Table 6.
It has also 9 conjugacy classes of elements, some of which are listed in Table 7.

We apply the Theorem 10.1 to the above maximal subgroups and few conju-
gacy classes of elements of A7 to construct several non-symmetric 1- designs. The
corresponding binary codes are also constructed.
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| No. [ Structure [ Index | Order |

Max|1] Ag 7 360
Max[2] | PSLy(7) | 15 | 168
Max[3] | PSLo(7) 15 168
Max[4] Ss 21 120
Max[5] | (A4 x 3):2 35 72

Table 6: Maximal subgroups of Az

[ nX | [nX] | Ca(9) | Maximal Centralizer |
2A | 105 Ds: 3 No
BA | 70 | Ay x32(2?2x3):3 No
3B | 280 3x3 No

Table 7: Some of the conjugacy classes of A7

10.1.1 G= A7, M = AG and nX =34
Let G = A7, M = Ag and nX = 3A. Then

b=[G:M]=70=[34] = 70,k = |M N 34| = 40.

Also using the character table of A7, we have x); = x1 + x2 = la + 6a and hence
xm(g) =143 =4 =\ where g € 3A. We produce a non-symmetric 1— (70,40, 4)
design D. A; acts primitively on the 7 blocks. Since Cy4,(g) = A4 x 3 is not
maximal in A7 (sits in the maximal subgroup (A4 x 3):2 with index two), A7
acts imprimitively on the 70 points. The complement of D, D, is a 1 — (70,30, 3)
design.

Computations with MAGMA [4] shows that the full automorphism group of
D is

Aut(D) = 235257 = 25 ! S7,
with |Aut(D)| = 239.32.5.7. Construction using MAGMA shows that the binary
code C of this design is a [70, 6, 32]5 code. The code C is self-orthogonal with the
weight distribution
<0,1>,<32,35>,<40,28 > .

Our group Az acts irreducibility on C.
If W; denote the set of all words in C of weight ¢, then

C =< Wsy >=< Wy >,

so C is generated by its minimum-weight codewords. The full automorphism
group of C is Aut(C) = 23°:Sg with |Aut(C)| = 2%2.32.5.7, and we note that
Aut(C) > Aut(D) and that Aut(D) is not a normal subgroup of Aut(C).
Furthermore C* is a [70,64,2] code and its weight distribution has been
determined. Since the blocks of D are of even size 40, we have that 7 meets
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l |Wl‘ Aut(D)wl
32 35 235: (A4 x 3):2
40(1) 7 235: S5
40(2) 21 235:(S5:2)

Table 8: Stabilizer of a word w; in Aut(D)

l Wi Aut(D)y,
32 35 2351(54 X 54)22
40 28 235:(S5 x 2)

Table 9: Stabilizer of a word w; in Aut(C)

evenly every vector of C' and hence j € Ct. IfW; denote the set of all codewords
in C* of weight i, then |Ws| = 35,, |[W3| = 840, |W,| = 14035 and

Ct =< W3 >, dim(< Wy >= 35, dim(< Wy >= 63.

Let e;; denote the 2-cycle (¢,7) in S7, where {i,j} = s(w2) is the support of a
codeword wy € Wa. Then e;j(ws) = W2, and < €;;|{i,j} = s(w),wy € Wy >=
235,

Using MAGMA we can easily show that V = FJ¥ is decomposable into inde-
composable G-modules of dimension 40 and 30. We also have dim(Soc(V) = 21
and

Soc(V) =< 3> ®C @ Cha,

where C is our 6-dimensional code and Cy4 is an irreducible code of dimension
14.

The structures the stabilizers Aut(D),,, and Aut(C),,, where [ € {32,40} are
listed in Table 8 and 9.

10.1.2 G=A7;, M = Ag and nX =2A
Let G = A7, M = Ag and nX = 2A. Then
b=[G: M]=7v=|24| =105k = |[M N2A| = 45.

Also using the character table of A7, we have x); = x1 + x2 = la + 6a and hence
xm(g) =142 =3 = A, where g € 2A. We produce a non-symmetric 1—(105, 45, 3)
design D. A; acts primitively on the 7 blocks. Since C4,(g) = Ds : 3 is not
maximal in A7 (sits in the maximal subgroup (A4 x 3):2 with index three), A7
acts imprimitively on the 105 points. The complement of D, D, is a 1— (105, 60, 4)
design.

The full automorphism group of D is

Aut(D) = 5335:.57 = 535 1Sy,
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with |Aut(D)| = 242.337.5.7.
Construction using MAGMA shows that the binary code C of this design is a
[105,7,45]2 code. The weight distribution of C' is

<0,1>,<45,28 >, < 48,35 >,< 57,35 >,< 60,28 >, < 105,1 > .

We also have that Hull(C') is a [105,6,48] code and has the following weight
distribution:
<0,1>,<48,35>,<60,28 > .

Note that C = Hull(C)® < 3 >, and that our group A7 acts irreducibility on
Hull(C). Also note that this result together with the result obtained in 5.1.2
imply that the 6-dimensional irreducible representation of A7 over GF'(2) could
be represented by two non-isomorphic codes, namely [105, 6, 48], and [70, 6, 32],
codes.
We also have
C =< Wy >=< Wx7 >,

so C is generated by its minimum-weight codewords. The full automorphism
group of C' is Aut(C) = Aut(D) and its structure was given above in 5.2.1.

Using MAGMA we can easily show that V = F3% is decomposable into in-
decomposable G-modules of dimension 1, 14, 20 and 70 (the first three are irre-
ducible). We also have dim(Soc(V) = 55 and that

Soc(V) =< 3> @C14 @ C14 ® Oz © Hull(C),

where C' = Hull(C)® < 3 > is our 7-dimensional code and Ci4 and Cyy are
irreducible codes of dimension 14 and 20 respectively.

10.1.3 G = A;, M = S5 and nX = 2A: 1 — (105,25,5) Design

Let G = A7, M = S5 and nX = 2A. Then

b=[G:M]=21,v=|24] =105,k = |M N 2A| = 25.

Note that both conjugacy classes of involutions of S5 fuses to 2A4. Also using
the character table of A7, we have xp; = x1 + x2 + X5 = la + 6a + 14a and
hence xp(9) =14+2+4+2 =5 =\, where g € 2A. We produce a non-symmetric
1 —(105,25,5) design D. A7 acts primitively on the 21 blocks. Since Ca,(g) =
Ds:3 is not maximal in A7 (sits in the maximal subgroup (44 x 3):2 with index
three), A7 acts imprimitively on the 105 points. The complement of D, D, is a
1 — (105,80,16) design.

10.1.4 G = A7, M = PSLy(7) and nX = 2A: 1— (105,21, 3) Design
Let G = A7, M = PSLy(7) and nX = 2A. Then
b=[G:M]=150v=[24] = 105,k = |M N 24| = 21.

Also using the character table of A7, we have xas = x1+ X6 = la+ 14b and hence
xm(g) =142 =3 = X\, where g € 2A. We produce a non-symmetric 1—(105, 21, 3)
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design D. A7 acts primitively on the 15 blocks. Since Cy,(g) = Ds : 3 is not
maximal in A7 (sits in the maximal subgroup (A4 x 3):2 with index three), A7
acts imprimitively on the 105 points. The complement of D, D, is a 1—(105, 84, 12)
design.

10.1.5 G = A7, M = PSLs(7) and nX = 3B: 1 — (280, 56,3) Design
Let G = A7, M = PSLy(7) and nX = 3B. Then

b=[G:M]=150v=|3B| =280,k = |M N 24| = 56.

Also using the character table of A7, we have xpr = x1+ x6 = la+ 14b and hence
xm(g) =142 = 3 = A, where g € 3B. We produce a non-symmetric 1—(280, 56, 3)
design D. A7 acts primitively on the 15 blocks. Since C4.(g) = 3x3 € Sylz(A7) is
not maximal in A7 (sits in the maximal subgroups Ag and (A4 x 3):2 with indices
40 and 8 respectively), A7 acts imprimitively on the 280 points. The complement
of D, D, is a 1 — (280,224, 12) design.

10.2 Design and codes from PSLs(q)

The main aim of this section to develop a general approach to G = PSLs(q), where
M is the maximal subgroup that is the stabilizer of a point in the natural action of
degree ¢+ 1 on the set . This is fully discussed in Subsection 5.2.1. We start this
section by applying the results discussed for Method 1, particularly the Theorem
10.1, to all maximal subgroups and conjugacy classes of elements of PSLo(11)
to construct 1- designs and their corresponding binary codes. These are itemized
bellow after Tables 5 and 6. The group PSLo(11) has order 660 = 22 x 3 x 5 x 11,
it has four conjugacy classes of maximal subgroups, which are listed in the table
10. It has also eight conjugacy classes of elements which we list in Table 11.

No. Order | Index Structure
Max|1] 55 12 Fs5=11:5
Max/[2 60 11 Asg
Max|[3 60 11 Ag
Max[4] 12 55 D1o

Table 10: Maximal subgroups of PSLy(11)

Max[1]
5A: D=1—(132,22,2),b = 12; C = [132,11,22]5, C* = [132,121,2];
Aut(D) = Aut(C) = 256 : Sp5.
5B: As for 5A.
114: D=1-(60,5,1),b=12; C = [60,12,5]5, C*+ = [60,48, 2]o;

Aut(D) = Aut(C) = (S5)'2 : Sqa.
11B: As for 11A.
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nX | [nX] [ Cq(g) | Maximal Centralizer |

2A 55 D12 Yes
3A 110 Zg No
54 | 132 Zs No
5B | 132 Zs No
64 | 110 | Zg No
11A 60 le No
11B 60 le No

Table 11: Conjugacy classes of PSLy(11)

Max|[2]
24 : D=1-(55,15,3),b = 11; C = [55,11, 153, C+ = [55, 44, 4]o;
Aut(D) = PSLy(11), Aut(C) = PSLy(11) : 2.
3A : D=1-(110,20,2),b=11; C = [110,10, 20]3, C*+ = [110, 100, 2];
Aut(D) = Aut(C) = 2°5 : Sp5.
5A : D=1-(132,12,1),b=11; C = [132,11,12]5, C*+ = [132,121, 2]o;
Aut(D) = Aut(C’) = (512)11 . Su.
5B : As for 5A.
Max[3]
As for Max]2].
Max[4]

2A : D=1-(55,7,7),b=55; C = [55,35,4]5, C+ = [55,20,10]5;
Aut(D) = Aut(C) = PSLo(11) : 2.

3A : D=1-(110,2,1),b = 55; C = [110,55,2]5, C*+ = [110, 55, 2]o;
Aut(D) = Aut(C) = 2% : Sss.

6A : As for 3A.

10.2.1 G = PSLs(q) of degree ¢+ 1, M = G,

Let G = PSLy(q), let M be the stabilizer of a point in the natural action of
degree g+ 1 on the set 2. Let M = G;. Then it is well known that G acts sharply
2-transitive on Q@ and M = Fy : Fj = Fy: Zg—1, if q is even, and M = I : Zq%l,
if ¢ is odd. Since G acts 2-transitively on €2, we have x = 1 + ¢ where x is
the permutation character of the action and v is an irreducible character of G
of degree g. Also since the action is sharply 2-transitive, only 14 fixes 3 distinct
elements of Q. Hence for all 1 # g € G we have A = x(g) € {0,1,2}.

Proposition 10.2 For G = PSLy(q), let M be the stabilizer of a point in the
natural action of degree ¢+ 1 on the set Q). Let M = G1. Suppose g € nX C G is
an element fixing exactly one point, and without loss of generality, assume g € M.
Then the replication number for the associated design isr = X = 1. We also have
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i) If q is odd then |g¢| = (> = 1), IM N g% = (¢ —1), and D is a 1-
2 2
((¢®> —1),4(¢—1),1) design with ¢+ 1 blocks and

Aut(D) = Sy (g-1) 1 S+1 = (Sy(g-1) """ Syt
For allp, C = Cp(D) = [3(¢* —1),q+1,1(¢—1)],, with Aut(C) = Aut(D).
(i) If q is even then |g%| = (¢* — 1), IM Ng®| = (¢ — 1), and D is a 1-
((¢> = 1),(q —1),1) design with ¢+ 1 blocks and
Aut(D) = S(g-1) 1 Sq41 = (Sg—1))*"" : Sgu1.
For allp, C =Cy(D) =[(¢> —1),q+1,q — 1)]p, with Aut(C) = Aut(D).

Proof: Since x(g) = 1, we deduce that 1)(g) = 0. We now use the character table
and conjugacy classes of PSLy(q) (for example see [14]):

(i) For ¢ odd, there are two types of conjugacy classes with ¥(g) = 0. In
both cases we have |Cq(g)| = ¢ and hence [nX| = |g%| = |PSLa(q)|/q =
(¢> —1)/2. Since b= [G : M] =g+ 1 and

x(g) x [nX| _ 1x(¢*—1)/2

k =
[G: M] g+1

=(¢-1)/2,

the results follow from Remark 10.2.

(ii) For q even, PSLa(q) = SL2(q) and there is only one conjugacy class with
¥(g) = 0. A class representative is the matrix g = ( } (1) > with |Ca(g)| =
g and hence [nX| = |g%| = |[PSLa(q)|/q = (¢*—1). Since b = [G : M] = q+1
and )

x(g) xnX] _1x(¢"—1)
[G: M] qg+1

the results follow from Remark 10.2. B

k= =q—1,

If we have A = r = 2 then a graph (possibly with multiple edges) can be
defined on b vertices, where b is the number of blocks, i.e. the index of M in G,
by stipulating that the vertices labelled by the blocks b; and b; are adjacent if b;
and b; meet. Then the incidence matrix for the design is an incidence matrix for
the graph.

In the case where the graph is an undirected graph without multiple edges the
following result from [8, Lemmal can be used.

Lemma 10.3 ([8]) LetT = (V, E) be a regular graph with |V| = N, |E| = e and
valency v. Let G be the 1-(e,v,2) incidence design from an incidence matriz A
for T'. Then Aut(T') = Aut(G).

Note: If the graph I is also connected, then it is an easy induction to show that
rank,(A) > |V| —1 for all p with obvious equality when p = 2. If in addition (as
happens for some classes of graphs, see [8, 25, 24]) the minimum weight is the
valency and the words of this weight are the scalar multiples of the rows of the
incidence matrix, then we also have Aut(C,(G)) = Aut(G).
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Proposition 10.4 For G = PSLy(q), let M be the stabilizer of a point in the
natural action of degree q + 1 on the set Q). Let M = G1. Suppose g € nX C G
is an element fizing exactly two points, and without loss of generality, assume
g € M = Gy and that g € Go. Then the replication number for the associated
design is r = X = 2. We also have

(i) If g is an involution, so that ¢ =1 (mod 4), the design D is a 1-(%q(q +
1), q,2) design with g+ 1 blocks and Aut(D) = Sqy1. Furthermore Co(D) =
[3q(q + 1), 4,q)2, Cp(D) = [3q(q+1),q+ 1,q), if p is an odd prime, and
Aut(Cp(D)) = Aut(D) = Sq41 for all p.

(ii) If g is not an involution, the design D is a 1-(q¢(q + 1),2q,2) design with
q + 1 blocks and Aut(D) = 229(a+1) . Sq+1. Furthermore Cao(D) = [g(q +
1),4,2q]2, Cp(D) = [q(q+1), ¢+1,2q], if p is an odd prime, and Aut(Cp(D)) =
Aut(D) = 229D . S for all p.

Proof: A block of the design constructed will be M N g“. Notice that from
elementary considerations or using group characters we have that the only powers
of g that are conjugate to g in G are g and g~!. Since M is transitive on Q\ {1},
g™ and (g~H)M give 2¢ elements in M N g% if o(g) # 2, and ¢ if o(g) = 2.
These are all the elements in M N ¢g¢ since M; is cyclic so if hy,ho € M; and
h1 = g7, ha = g5 for some x1,22 € G, then hy is a power of ha, so they can only
be equal or inverses of one another.

(i) In this case by the above k = |[M N ¢g“| = ¢ and hence

\nX\:kX[G:M] :qx(q—kl).
x(9) 2

So D is a 1—(%q(q +1),q,2) design with ¢ + 1 blocks. An incidence matrix
of the design is an incidence matrix of a graph on ¢ + 1 points labelled by
the rows of the matrix, with the vertices corresponding to rows r; and 7;
being adjacent if there is a conjugate of g that fixes both ¢ and j, giving
an edge [¢,j]. Since G is 2-transitive, the graph we obtain is the complete
graph Ky 1.

The automorphism group of the design is the same as that of the graph
(see [8]), which is Sg1. By [24], C2(D) = [3q(q + 1),¢,q]> and C,(D) =
[%q(q+ 1),q+1,q], if p is an odd prime. Further, the words of the minimum

weight ¢ are the scalar multiples of the rows of the incidence matrix, so
Aut(C,(D)) = Aut(D) = Sy41 for all p.

(ii) If g is not an involution, then k = |M N g| = 2q and hence

Ex|G:M] 2¢x(qg+1)
x(9) 2
So D is a 1-(q(q + 1),2¢,2) design with ¢ + 1 blocks. In the same way we

define a graph from the rows of the incidence matrix, but in this case we
have the complete directed graph.

InX| = =q(g+1).
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The automorphism group of the graph and of the design is 2z(a+]) . g 1
Similarly to the previous case, C2(D) = [¢(q + 1),q,2q]2 and Cp(D) =
lq(¢+1),q9+1,2q], if p is an odd prime. Further, the words of the minimum
weight 2¢ are the scalar multiples of the rows of the incidence matrix, so
Aut(C,(D)) = Aut(D) = 229+ : 5, for all p. W

We end this subsection by giving few examples of designs and codes con-
structed, using Propositions 10.2 and 10.4, from PSLy(q) for ¢ € {16,17,19},
where M is the stabilizer of a point in the natural action of degree ¢ + 1 and
g € nX C G is an element fixing exactly one or two points.

Example 10.1 (PSLy(16))

1. g is an involution having cycle type 1128 r =X =1: D is a 1 — (255,15,1)
design with 17 blocks. For allp, C = Cp(D) = [255,17,15],, with Aut(C) =
Aut(’D) = 515 l 517 = (515)17 : 517.

2. g is an element of order 3 having cycle type 1235, r = X = 2: 5 a
—(272,32,2) design with 17 blocks. C3(D) = [272,16,32]2 and C,(D) =
[272, 17,32], for odd p. Also for all p we have Aut(Cp(D)) = Aut(D) =
2136 : 517.
Example 10.2 (PSLy(17)) Note that 17 =1 (mod 4).
1. g is an element of order 17 having cycle type 1'17', r = X = 1: D is a
1 —(144,8,1) design with 18 blocks. For all p, C = C,(D) = [ 4,18, 8],,

with Aut(C) = Aut(D) = Sg 1 S13 = (Ss)'® : S1s.

2. g is an involution having cycle type 1228, r =X =2: D is a 1 — (153,17,2)
design with 18 blocks. Ca(D) = [153,17,17]3 and Cp(D) = [153,18,17], for
odd p. Also for all p we have Aut(C, (D)) = Aut(D) = Sis.

3. g is an element of order 4 having cycle type 124*, r = X\ = 2: D is a
— (306, 34, 2) design with 18 blocks. C2(D) = [306,17,34]2 and C,(D) =
[306,18,34], for odd p. Also for all p we have Aut(C,(D)) = Aut(D) =
2153 : Slg.
4. g is an element of order 8 having cycle type 128%, r = X\ =

2:
— (306, 34,2) design with 18 blocks. Co(D) = [306, 17, 34]2 and Cp
(306, 18, 34],, for odd p. Also for all p we have Aut(Cy(D)) = Aut(D) =
2153 : Slg.

Example 10.3 (PSLy(19))

1. g is an element of order 19 having cycle type 1'19', r = X = 1: D is a
— (180,9,1) design with 20 blocks. For all p, C' = Cp(D) = [180,20,9],,
with Aut(C’) = Aut(D) = Sg i SQO = (59)20 : Sgo.

2. g is an element of order 3 having cycle type 1235, r = X\ = 2:
— (380, 38,2) design with 20 blocks. C3(D) = [3607 19,38]2 and Cp(D
(360,20, 38], for odd p. Also for all p we have Aut(C,(D)) = Aut(D) =
2190 . SQ().
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10.3 Some 1-designs from the Janko group J;

The Jako group J; of order 23 x 3 x 5 x 7 x 11 x 19 has seven conjugacy classes
of maximal subgroups, which were listed in the table 1. It has also 15 conjugacy
classes of elements some of which are listed in Table 12.

| nX [ [nX]| | Cqlg) | Maximal Centralizer

2A | 1463 | 2 x As Yes
3A | 5852 | Dg x5 No

Table 12: Some of the conjugacy classes of J;

We apply the Theorem 10.1 to the maximal subgroups and few conjugacy
classes of elements of J; to construct several 1- designs.

10.3.1 G =.J;, M = PSLy(11) and nX = 2A: 1 — (1463,55,10) Design
Let G =J;, M = PSLy(11) and nX = 2A. Then

b=[G: M]=266,v=|2A| = 1463,k = |M N 2A| = 55.
Also using the character table of J;, we have

XM = X1+ X2 + x4+ x6 = la+ 56a + 56b + 76a + 77a

and hence xp(g9) =14+0+0+4+5 =10 = A, where g € 24. We produce a
non-symmetric 1— (1463, 55, 10) design D. Since C¢(g) = 2 x A5 is also a maximal
subgroup of Ji, J; acts primitively on blocks and points. The complement of D,
D, is a 1 — (1463, 1408, 256) design.

10.3.2 G=J;, M =2x A5 and nX =2A: 1— (1463,31,31) Design
Let G=Ji, M =2 x As and nX = 2A. Then
b=[G: M]=1463,v = |2A4] = 1463.

It is easy to see that M = 2 x Ay has three conjugacy classes of order 2, namely
xr1 = 2z, x2 = « and x3 = zaq, that fuse to 24 with corresponding centralizer
orders 120, 8 and 8. Now by using Corollary 6.3 we have

3

C 120 120 120
Z ICc(9)] g,

)\ = = _— = —
xa(9) Cr(z)] 120 8 '8

i=1

where g € 2A. Alternatively we can use the character table of J; to find that

XM = X1+ X2+ X3+ 2Xxa + 2X6 + Xo + X10 + X11 + 2X12 + 2X15,

and
xm(g) =14+04+0+84+10+0+0+04+10+2=31=\

In this case clearly k = |[M N 24| = A = 31, and we produce a symmetric 1 —
(1463,31,31) design D. Obviously J; acts primitively on blocks and points. The

complement of D, D, is a 1 — (1463, 1432, 1432) design.
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10.3.3 G =.J;, M = PSLy(11) and nX = 3A: 1 — (5852,110,5) Design
Let G =Jy, M = PSLy(11) and nX = 3A. Then

b=[G: M]=2066,v=|3A| =5852,k =|M N3A| =110.
Also using the character table of J;, we have
XM = X1+ X2 + x4+ x6 = la+ 56a + 56b + 76a + 77a

and hence xp(g) =14+4+1—1=5 =\, where g € 3A. We produce a non-
symmetric 1 — (5852, 110,5) design D. Since Cg(g) = Dg X 5 is not a maximal
subgroup of Jp, Jy acts primitively on 266 blocks but imprimitively on 5852 points.
The complement of D, D, isa 1 — (5852,5742,261) design.

10.3.4 G =.J;, M = PSLy(11) and nX = 3A: 1 — (5852,20,5) Design
Let G=Ji, M =2 x As and nX = 3A. Then

b=[G: M]=1463,v = [3A| = 5852,k = |M N 34| = 20.

It is easy to see that M = 2 x As has only one conjugacy class of elements of
order 3, which fuses to 34, with the corresponding centralizer order 6. Now by
using Corollary 6.3 we have

ICalg)l _ 30
A = = — = = 5
xm(9) |Cor ()] 6 )
where g € 3A. Alternatively we can use the character s as in Subsection 10.3.2
to find that

Xm(g) =1+24+2+42-240+0+0+2-2=5=),

where g € 34. We produce a non-symmetric 1 — (5852,20,5) design D. Since
Ca(g) = Dg x 5 is not a maximal subgroup of Ji, J; acts primitively on the
1463 blocks but imprimitively on the 5852 points. The complement of D, @, is a
1 — (5852,5832,1458) design.
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