Structure and representations of Jordan superalgebras

Ivan P. Shestakov

Instituto de Matemática e Estatística
Universidade de São Paulo

20 July 2015-01 August 2015, CIMPA 2015 Workshop
Muizenberg, Cape Town, South Africa

Jordan Algebras.

Pascual Jordan, 1933:

Definition

Jordan algebra is an algebra over a field of characteristic not 2 that satisfies the identities

$$
\begin{aligned}
x y & =y x \\
\left(x^{2} y\right) x & =x^{2}(y x)
\end{aligned}
$$

A associative with a product $a b \Longrightarrow A^{(+)}=\langle A,+, \cdot\rangle$ is Jordan, where $a \cdot b=\frac{1}{2}(a b+b a)$.

A Jordan algebra J is called special if there exists an
associative algebra A such that $J \subseteq A^{(+)}$.

Jordan Algebras.

Pascual Jordan, 1933:

Definition

Jordan algebra is an algebra over a field of characteristic not 2 that satisfies the identities

$$
\begin{aligned}
x y & =y x \\
\left(x^{2} y\right) x & =x^{2}(y x)
\end{aligned}
$$

A associative with a product $a b \Longrightarrow A^{(+)}=\langle A,+, \cdot\rangle$ is Jordan, where $a \cdot b=\frac{1}{2}(a b+b a)$.

A Jordan algebra J is called special if there exists an
associative algebra A such that $J \subseteq A^{(+)}$

Jordan Algebras.

Pascual Jordan, 1933:

Definition

Jordan algebra is an algebra over a field of characteristic not 2 that satisfies the identities

$$
\begin{aligned}
x y & =y x \\
\left(x^{2} y\right) x & =x^{2}(y x)
\end{aligned}
$$

A associative with a product $a b \Longrightarrow A^{(+)}=\langle A,+, \cdot\rangle$ is Jordan, where $a \cdot b=\frac{1}{2}(a b+b a)$.

A Jordan algebra J is called special if there exists an associative algebra A such that $J \subseteq A^{(+)}$.

Examples:

Example (Algebras of Hermitian type)
$(A, *)$ associative algebra with involution $*$, $H(A, *)=\left\{a \in A \mid a^{*}=a\right\}$ is a (Jordan) subalgebra of $A^{(+)}$. $(A, *)$ is $*$-simple $\Longrightarrow H(A, *)$ is simple.

Example (Algebras of Clifford type (spin-factors))
V a vector space over a field $F, f: V \times V \rightarrow F$ a symmetric
bilinear form, $J=F \cdot 1 \oplus V$ such that $1 J=1, u \cdot v=f(u, v) 1$ for
$u, v \in V$. Then $J=J(V, f)$ is a Jordan algebra. If dim $V>1$
and f is non-degenerate, then $J(V, F)$ is simple

Examples:

Example (Algebras of Hermitian type)

$(A, *)$ associative algebra with involution $*$, $H(A, *)=\left\{a \in A \mid a^{*}=a\right\}$ is a (Jordan) subalgebra of $A^{(+)}$. $(A, *)$ is $*$-simple $\Longrightarrow H(A, *)$ is simple.

Example (Algebras of Clifford type (spin-factors))

V a vector space over a field $F, f: V \times V \rightarrow F$ a symmetric bilinear form, $J=F \cdot 1 \oplus V$ such that $1_{J}=1, u \cdot v=f(u, v) 1$ for $u, v \in V$. Then $J=J(V, f)$ is a Jordan algebra. If $\operatorname{dim} V>1$ and f is non-degenerate, then $J(V, F)$ is simple

Examples:

Example (Algebras of Albert type)

$(\mathbb{O}, *)$ an algebra of (generalized) octonions with the standard involution, $H\left(\mathbb{O}_{3}, *\right)$ the space of $*$-hermitian 3×3 matrices over \mathbb{O}. Then $H\left(\mathbb{O}_{3}, *\right)$ is a simple non-special Jodan algebra with respect to multiplication $a \cdot b=\frac{1}{2}(a b+b a)$.
A Jordan algebra J is of Albert type if $\bar{J}=\bar{F} \otimes J \cong H\left(\mathbb{O}_{3}, *\right)$ where \bar{F} is the algebraic closure of the field F.
\square
Everv simple Jordan alaebra is of Hermitian, Clifford, or Albert
type.

Examples:

Example (Algebras of Albert type)

$(\mathbb{O}, *)$ an algebra of (generalized) octonions with the standard involution, $H\left(\mathbb{O}_{3}, *\right)$ the space of $*$-hermitian 3×3 matrices over \mathbb{O}. Then $H\left(\mathbb{O}_{3}, *\right)$ is a simple non-special Jodan algebra with respect to multiplication $a \cdot b=\frac{1}{2}(a b+b a)$.
A Jordan algebra J is of Albert type if $\bar{J}=\bar{F} \otimes J \cong H\left(\mathbb{O}_{3}, *\right)$ where \bar{F} is the algebraic closure of the field F.

Theorem (E.Zelmanov)

Every simple Jordan algebra is of Hermitian, Clifford, or Albert type.

Superalgebras

A superalgebra, in general, is a Z_{2}-graded algebra,

$$
A=A_{0} \oplus A_{1}, A_{i} A_{j} \subseteq A_{i+j(\bmod 2)} .
$$

Examples

- $\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i, \mathbb{C}_{0}=\mathbb{R}, \mathbb{C}_{1}=\mathbb{R} i$;
- A an algebra $\Longrightarrow A[\sqrt{1}]=A \oplus A u$ (A-double), $(A[\sqrt{1}])_{0}=A,(A[\sqrt{1}])_{1}=A u, u(=\sqrt{1})$ central with $u^{2}=1$;
- Grassmann algebra $G=\operatorname{alg}\left\langle 1, e_{1}, e_{2}, \cdots \mid e_{i} e_{j}=-e_{j} e_{i}\right\rangle$, $G=G_{0} \oplus G_{1}$.

Superalgebras

A superalgebra, in general, is a Z_{2}-graded algebra,

$$
A=A_{0} \oplus A_{1}, A_{i} A_{j} \subseteq A_{i+j(\bmod 2)} .
$$

Examples

- $\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i, \mathbb{C}_{0}=\mathbb{R}, \mathbb{C}_{1}=\mathbb{R} i ;$
- A an algebra $\Longrightarrow A[\sqrt{1}]=A \oplus A u$ (A-double), $(A[\sqrt{1}])_{0}=A,(A[\sqrt{1}])_{1}=A u, u(=\sqrt{1})$ central with $u^{2}=1$;
- Grassmann algebra $G=\operatorname{alg}\left\langle 1, e_{1}, e_{2}, \cdots \mid e_{i} e_{j}=-e_{j} e_{i}\right\rangle$, $G=G_{0} \oplus G_{1}$.

Grassmann envelope $G(A)=G_{0} \otimes A_{0}+G_{1} \oplus A_{1}$.
A superalgebra $A=A_{0}+A_{1}$ is a \mathcal{M}-superalgebra if $G(A) \in \mathcal{M}$ ($\mathcal{M}=$ Assoc, Lie, Jord, etc).
$A \in \mathcal{M} \Longrightarrow G$

A) is a \mathcal{M}-superalgebra.

Superalgebras

A superalgebra, in general, is a Z_{2}-graded algebra,

$$
A=A_{0} \oplus A_{1}, A_{i} A_{j} \subseteq A_{i+j(\bmod 2)} .
$$

Examples

- $\mathbb{C}=\mathbb{R} \oplus \mathbb{R} i, \mathbb{C}_{0}=\mathbb{R}, \mathbb{C}_{1}=\mathbb{R} i ;$
- A an algebra $\Longrightarrow A[\sqrt{1}]=A \oplus A u$ (A-double), $(A[\sqrt{1}])_{0}=A,(A[\sqrt{1}])_{1}=A u, u(=\sqrt{1})$ central with $u^{2}=1$;
- Grassmann algebra $G=\operatorname{alg}\left\langle 1, e_{1}, e_{2}, \cdots \mid e_{i} e_{j}=-e_{j} e_{i}\right\rangle$, $G=G_{0} \oplus G_{1}$.

Grassmann envelope $G(A)=G_{0} \otimes A_{0}+G_{1} \oplus A_{1}$.
A superalgebra $A=A_{0}+A_{1}$ is a \mathcal{M}-superalgebra if $G(A) \in \mathcal{M}$ ($\mathcal{M}=$ Assoc, Lie, Jord, etc).
$A \in \mathcal{M} \Longrightarrow G \otimes A=\left(G_{0} \otimes A\right) \oplus\left(G_{1} \otimes A\right)$ is a \mathcal{M}-superalgebra.

Associative superalgebras

Theorem (C.T.C.Wall, 1963)

Every simple finite-dimensional associative superalgebra over an algebraically closed field F is isomorphic to one of the following superalgebras:

- $A=\mathrm{M}_{m \mid n}(F), \quad A_{\overline{0}}=\left\{\left(\begin{array}{cc}\star & 0 \\ 0 & \star\end{array}\right) \begin{array}{c}m \\ n\end{array}\right\}, \quad A_{\overline{1}}=\left\{\left(\begin{array}{cc}0 & \star \\ \star & 0\end{array}\right) \begin{array}{c}m \\ n\end{array}\right\}$,
- $A=\mathrm{M}_{n}(F)[\sqrt{1}]$, the doubled matrix algebra.

In general, if $A \in \mathcal{M}$ then the A-double $A[\sqrt{1}]$ is not an
\mathcal{M}-superalgebra.

Associative superalgebras

Theorem (C.T.C.Wall, 1963)

Every simple finite-dimensional associative superalgebra over an algebraically closed field F is isomorphic to one of the following superalgebras:

- $A=\mathrm{M}_{m \mid n}(F), \quad A_{\overline{0}}=\left\{\left(\begin{array}{cc}\star & 0 \\ 0 & \star\end{array}\right) \begin{array}{c}m \\ n\end{array}\right\}, \quad A_{\overline{1}}=\left\{\left(\begin{array}{cc}0 & \star \\ \star & 0\end{array}\right) \begin{array}{c}m \\ n\end{array}\right\}$,
- $A=\mathrm{M}_{n}(F)[\sqrt{1}]$, the doubled matrix algebra.

In general, if $A \in \mathcal{M}$ then the A-double $A[\sqrt{1}]$ is not an \mathcal{M}-superalgebra.

Jordan superalgebras

$A=A_{0} \oplus A_{1}$ associative superalgebra with a product $a b \Longrightarrow$ $A^{(+)}=\langle A,+, \cdot\rangle$ is a Jordan superalgebra, where $a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right),|a|=i$ if $a \in A_{i}$.

Example
$M_{n}(F)[\sqrt{1}]^{(+)}(n>1), M_{m \mid n}(F)^{(+)}$are simple Jordan
superalgebras.

Example (Hermitian superalgebras)
$(A, *)$ associative superalaebra with superinvolution $H(A, *)=\left\{a \in A \mid a^{*}=a\right\}$ is a (Jordan) subsuperalgebra of

Jordan superalgebras

$A=A_{0} \oplus A_{1}$ associative superalgebra with a product $a b \Longrightarrow$ $A^{(+)}=\langle A,+, \cdot\rangle$ is a Jordan superalgebra, where $a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right),|a|=i$ if $a \in A_{i}$.

Example

$M_{n}(F)[\sqrt{1}]^{(+)}(n>1), M_{m \mid n}(F)^{(+)}$are simple Jordan superalgebras.

Example (Hermitian superalgebras)
($A . *$) associative suneralgebra with superinvolution $H(A, *)=\left\{a \in A \mid a^{*}=a\right\}$ is a (Jordan) subsuperalgebra of

Jordan superalgebras

$A=A_{0} \oplus A_{1}$ associative superalgebra with a product $a b \Longrightarrow$
$A^{(+)}=\langle A,+, \cdot\rangle$ is a Jordan superalgebra, where
$a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right),|a|=i$ if $a \in A_{i}$.

Example

$M_{n}(F)[\sqrt{1}]^{(+)}(n>1), M_{m \mid n}(F)^{(+)}$are simple Jordan superalgebras.

A linear mapping $*: A_{0} \oplus A_{1} \rightarrow A_{0} \oplus A_{1}$ is called a superinvolution if $(a b)^{*}=(-1)^{|a||b|} b^{*} a^{*},\left(a^{*}\right)^{*}=a$.

[^0]
Jordan superalgebras

$A=A_{0} \oplus A_{1}$ associative superalgebra with a product $a b \Longrightarrow$
$A^{(+)}=\langle A,+, \cdot\rangle$ is a Jordan superalgebra, where
$a \cdot b=\frac{1}{2}\left(a b+(-1)^{|a||b|} b a\right),|a|=i$ if $a \in A_{i}$.

Example

$M_{n}(F)[\sqrt{1}]^{(+)}(n>1), M_{m \mid n}(F)^{(+)}$are simple Jordan superalgebras.

A linear mapping $*: A_{0} \oplus A_{1} \rightarrow A_{0} \oplus A_{1}$ is called a superinvolution if $(a b)^{*}=(-1)^{|a||b|} b^{*} a^{*},\left(a^{*}\right)^{*}=a$.

Example (Hermitian superalgebras)

$(A, *)$ associative superalgebra with superinvolution $*$,
$H(A, *)=\left\{a \in A \mid a^{*}=a\right\}$ is a (Jordan) subsuperalgebra of $A^{(+)}$.

Jordan superalgebras

$M_{n \mid n}(F)$ has a superinvolution (supertransposition)

$$
\operatorname{trp}:\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \mapsto\left(\begin{array}{cc}
D^{t} & -B^{t} \\
C^{t} & A^{t}
\end{array}\right)
$$

$M_{n \mid 2 m}(F)$ has an ortho-symplectic superinvolution

$$
\text { osp : }\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \mapsto\left(\begin{array}{cc}
I_{n} & 0 \\
0 & U
\end{array}\right)\left(\begin{array}{cc}
A^{t} & -C^{t} \\
B^{t} & D^{t}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -U
\end{array}\right),
$$

where I_{n} is the identity matrix of order n and $U=\left(\begin{array}{cc}0 & -I_{m} \\ I_{m} & 0\end{array}\right)$.

Jordan superalgebras

Examples
 Hermitian simple Jordan superalgebras
 $\operatorname{Jtrp}(n)=H\left(M_{n \mid n}, \operatorname{trp}\right),(n>1), \operatorname{Josp}(n, 2 m)=H\left(M_{n \mid 2 m}\right.$, osp $)$.

Example (Superaigera of superform)
$V=V_{0} \oplus V_{1}$ a vector superspace over a field $F, f: V \times V \rightarrow F$
a supersymmetric bilinear form, that is, $f \mid v_{0}$ is symmetric, $\left.f\right|_{v_{1}}$ is
skew-symmetric, $f\left(V_{i}, V_{j}\right)=0$ if $i \neq j$. Then $J(V, f)=F \cdot 1 \oplus V$
such that $1_{J}=1, u \cdot v=f(u, v) 1$ for $u, v \in V$ is a Jordan
superalgebra, $J_{0}=F \cdot 1 \oplus V_{0}, J_{1}=V_{1}$. If f is non-degenerate
then $J(V, f)$ is simple, except the case $\operatorname{dim} V=1, V=V_{0}$.

Jordan superalgebras

Examples

Hermitian simple Jordan superalgebras
$\operatorname{Jtrp}(n)=H\left(M_{n \mid n}, \operatorname{trp}\right),(n>1), \operatorname{Josp}(n, 2 m)=H\left(M_{n \mid 2 m}, o s p\right)$.

Example (Superalgera of superform)

$V=V_{0} \oplus V_{1}$ a vector superspace over a field $F, f: V \times V \rightarrow F$ a supersymmetric bilinear form, that is, $\left.f\right|_{v_{0}}$ is symmetric, $\left.f\right|_{v_{1}}$ is skew-symmetric, $f\left(V_{i}, V_{j}\right)=0$ if $i \neq j$. Then $J(V, f)=F \cdot 1 \oplus V$ such that $1_{J}=1, u \cdot v=f(u, v) 1$ for $u, v \in V$ is a Jordan superalgebra, $J_{0}=F \cdot 1 \oplus V_{0}, J_{1}=V_{1}$. If f is non-degenerate then $J(V, f)$ is simple, except the case $\operatorname{dim} V=1, V=V_{0}$.

Jordan superalgebras

Example (Kaplansky superalgebra K_{3})
$K_{3}=F e+(F x+F y)$, where $e^{2}=e, e x=\frac{1}{2} x, e y=\frac{1}{2} y, x y=e$. The superalgebra K_{3} is simple not unital.

Example (Superalgebra D_{i})

 superalgebra D_{t} is simple if $t \neq 0$. In the case $t=-1$, the superalgebra D_{-1} is isomorphic to $M_{1 \mid 1}(F)^{(+)}$.

Example (Kac superalgebra K_{10})

V. Kac introduced the simple 10-dimensional superalgebra K_{10} that is related (via the Tits-Kantor-Koecher construction) to the exceptional 40-dimensional Lie superalgebra.

Jordan superalgebras

Example (Kaplansky superalgebra K_{3})

$K_{3}=F e+(F x+F y)$, where $e^{2}=e, e x=\frac{1}{2} x, e y=\frac{1}{2} y, x y=e$. The superalgebra K_{3} is simple not unital.

Example (Superalgebra D_{t})

$D_{t}=\left(F e_{1}+F e_{2}\right)+(F x+F y)$ with the product: $e_{i}^{2}=e_{i}, e_{1} e_{2}=$ $0, e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y, x y=e_{1}+t e_{2}, t \in F, i=1$, 2. The superalgebra D_{t} is simple if $t \neq 0$. In the case $t=-1$, the superalgebra D_{-1} is isomorphic to $M_{1 \mid 1}(F)^{(+)}$.

> Example (Kac superalgebra K_{10})
> V. Kac introduced the simple 10-dimensional superalgebra K_{10} that is related (via the Tits-Kantor-Koecher construction) to the exceptional 40-dimensional Lie superalgebra.

Jordan superalgebras

Example (Kaplansky superalgebra K_{3})
$K_{3}=F e+(F x+F y)$, where $e^{2}=e, e x=\frac{1}{2} x, e y=\frac{1}{2} y, x y=e$. The superalgebra K_{3} is simple not unital.

Example (Superalgebra D_{t})

$D_{t}=\left(F e_{1}+F e_{2}\right)+(F x+F y)$ with the product: $e_{i}^{2}=e_{i}, e_{1} e_{2}=$ $0, e_{i} x=\frac{1}{2} x, e_{i} y=\frac{1}{2} y, x y=e_{1}+t e_{2}, t \in F, i=1,2$. The superalgebra D_{t} is simple if $t \neq 0$. In the case $t=-1$, the superalgebra D_{-1} is isomorphic to $M_{1 \mid 1}(F)^{(+)}$.

Example (Kac superalgebra K_{10})

V. Kac introduced the simple 10-dimensional superalgebra K_{10} that is related (via the Tits-Kantor-Koecher construction) to the exceptional 40 -dimensional Lie superalgebra.

Kantor double

Example (Kantor double)

Let $A=A_{0} \oplus A_{1}$ be an associative commutative superalgebra equipped with a graded super-anticommutative bilinear map (bracket)

$$
[,]: A \otimes A \rightarrow A,\left[A_{i}, A_{j}\right] \subseteq A_{i+j}
$$

A Kantor double is a direct sum of vector spaces $J(A,[])=,A \oplus \bar{A}$, with the product

$$
a \cdot b=a b, a \cdot \bar{b}=\overline{a b}, \bar{b} \cdot a=(-1)^{|a|} \overline{b a}, \bar{a} \cdot \bar{b}=(-1)^{|b|}[a, b] .
$$

$J=J(A,[]$,$) is a commutative superalgebra under the grading$ $J_{0}=A_{0} \oplus \bar{A}_{1}, J_{1}=A_{1} \oplus \bar{A}_{0}$. A bracket [,] is called a Jordan bracket on A if $J(A,[]$,$) is a Jordan superalgebra.$

Kantor double

I.Kantor showed that every Poisson bracket is Jordan. In particular, let V be an n-dimensional vector space with a basis $e_{1}, \ldots, e_{n}, n \geq 2$. Consider the Poisson bracket on the Grassmann superalgebra $G_{n}=G(V)$:

$$
[f, g]=\sum_{i=1}^{n}(-1)^{|g|} \frac{\partial f}{\partial e_{i}} \frac{\partial g}{\partial e_{i}} .
$$

The Jordan superalgebra $\operatorname{Kan}(n)=J(G(V),[]$,$) is simple,$ $\operatorname{dim}(\operatorname{Kan}(n))=2^{n+1}$.

Theorem (V.Kac, with a rectification of I.Kantor)

Every finite dimensional simple Jordan superalgebra over an algebraically closed field of characteristic 0 is isomorphic to one of the superalgebras

$$
\begin{gathered}
M_{n}[\sqrt{1}]^{(+)}, M_{n \mid m}^{(+)}, \operatorname{Jtrp}(n),(n>1), \operatorname{Josp}(n, 2 m), J(V, f) \\
K_{3}, D_{t}, K_{10}, \operatorname{Kan}(n) .
\end{gathered}
$$

Finite dimensional simple Jordan superalgebras in positive characteristic were classified in papers by E.Zelmanov, C.Martínez, and M.Racine. In this case appear some new superalgebras, namely, the Cheng-Kac superalgebra JCK Kantor doubles $J(A,[]$,$) where the Jordan bracket [,] is not$ necessary Poisson, and exceptional matrix superalgebras in characteristic 3

Theorem (V.Kac, with a rectification of I.Kantor)

Every finite dimensional simple Jordan superalgebra over an algebraically closed field of characteristic 0 is isomorphic to one of the superalgebras

$$
\begin{gathered}
M_{n}[\sqrt{1}]^{(+)}, M_{n \mid m}^{(+)}, \operatorname{Jtrp}(n),(n>1), \operatorname{Josp}(n, 2 m), J(V, f) \\
K_{3}, D_{t}, K_{10}, \operatorname{Kan}(n) .
\end{gathered}
$$

Finite dimensional simple Jordan superalgebras in positive characteristic were classified in papers by E.Zelmanov, C.Martínez, and M.Racine. In this case appear some new superalgebras, namely, the Cheng-Kac superalgebra JCK ${ }_{6}$, Kantor doubles $J(A,[]$,$) where the Jordan bracket [,] is not$ necessary Poisson, and exceptional matrix superalgebras in characteristic 3.

Representations of Jordan algebras

S.Eilenberg, 1947:

Let A be an algebra and V be an A-bimodule. The split null extension $E(A, V)=A \oplus V$ is an algebra where A is a subalgebra, $V^{2}=0$, and the products $a \cdot v, v \cdot a$ for $a \in A$ and $v \in V$ are given by the bimodule action.
If $A \in \mathcal{M}(\mathcal{M}=$ Assoc, Lie, Jord, etc) then the bimodule V is called an $A_{\mathcal{M}}$-bimodule if $E(A, V) \in \mathcal{M}$.
The universal multiplicative enveloping algebra $U_{\mathcal{M}}(A)$ is an associative algebra such that $A_{\mathcal{M}}$-bimod $\cong U_{\mathcal{M}}(A)$-mod.

Representations of Jordan algebras

S.Eilenberg, 1947:

Let A be an algebra and V be an A-bimodule. The split null extension $E(A, V)=A \oplus V$ is an algebra where A is a subalgebra, $V^{2}=0$, and the products $a \cdot v, v \cdot a$ for $a \in A$ and $v \in V$ are given by the bimodule action.
If $A \in \mathcal{M}(\mathcal{M}=A s s o c$, Lie, Jord, etc) then the bimodule V is called an $A_{\mathcal{M}}$-bimodule if $E(A, V) \in \mathcal{M}$.
The universal multiplicative enveloping algebra $U_{\mathcal{M}}(A)$ is an associative algebra such that $A_{\mathcal{M}}$-bimod $\cong U_{\mathcal{M}}(A)$-mod.

Representations of Jordan algebras

N.Jacobson:
$U(J)=U_{\text {Jord }}(J)$.

- $\operatorname{dim} J<\infty \Longrightarrow \operatorname{dim} U(J)<\infty$;
- J semisimple $\Longleftrightarrow U(J)$ is semisimple \Longleftrightarrow every bimodule is comletely reducible;
- $\operatorname{dim} J<\infty \Longrightarrow J$ has a finite number of irreducible bimodules;
- $J^{n}=0 \Longrightarrow J$ has no irreducible bimodules;
- Finite dimensional irreducible bimodules were classified.

Coordinatization Theorem

L.Kronecker: A associative, $A \supseteq M_{n}(F) \ni 1_{A} \Longrightarrow A \cong M_{n}(B)$ A-bimod $\cong B$-bimod.
N.Jacobson: J Jordan, $J \supseteq H_{n}(F) \ni 1 J \Longrightarrow J \cong H_{n}(D)$, where
D is an alternative algebra with a nuclear involution.
$H_{n}(D)_{\text {Jord-himod }} \cong(D, *)_{\text {Alt-bimod }}$

Coordinatization Theorem

L.Kronecker: A associative, $A \supseteq M_{n}(F) \ni 1_{A} \Longrightarrow A \cong M_{n}(B)$ A-bimod $\cong B$-bimod.
N.Jacobson: J Jordan, $J \supseteq H_{n}(F) \ni 1_{J} \Longrightarrow J \cong H_{n}(D)$, where
D is an alternative algebra with a nuclear involution.
$H_{n}(D)_{\text {Jord-bimod }} \cong(D, *)_{\text {Alt-bimod. }}$.

Coordinatization Theorem

L.Kronecker: A associative, $A \supseteq M_{n}(F) \ni 1_{A} \Longrightarrow A \cong M_{n}(B)$ A-bimod $\cong B$-bimod.
N.Jacobson: J Jordan, $J \supseteq H_{n}(F) \ni 1_{J} \Longrightarrow J \cong H_{n}(D)$, where D is an alternative algebra with a nuclear involution. $H_{n}(D)_{\text {Jord }}$-bimod $\cong(D, *)_{\text {Alt }}$-bimod.

Jordan supermodules

A supermodule $V=V_{0} \oplus V_{1}$ over a Jordan superalgebra $J=J_{0} \oplus J_{1}$ is called a Jordan supermodule if the split null extension $E(J, V)=J+V=\left(J_{0}+V_{0}\right)+\left(J_{1}+V_{1}\right)$ is a Jordan superalgebra.
Difference: a nilpotent Jordan superalgebra may have
irreducible supermodule.
Till now, only irreducible bimodules over finite dimensional simple superalgebras were considered.

Jordan supermodules

A supermodule $V=V_{0} \oplus V_{1}$ over a Jordan superalgebra $J=J_{0} \oplus J_{1}$ is called a Jordan supermodule if the split null extension $E(J, V)=J+V=\left(J_{0}+V_{0}\right)+\left(J_{1}+V_{1}\right)$ is a Jordan superalgebra.
Difference: a nilpotent Jordan superalgebra may have irreducible supermodule.
Till now, only irreducible bimodules over finite dimensional simple superalgebras were considered.

Jordan supermodules

- In char $F=0$ case, the TKK (Tits-Kantor-Koecher) functor admits to apply results from representation theory of Lie superalgebras.
- For superalgebras of classical type (Hermitian and Clifford superalgebras) sometimes the classical methods work in positive characteristic as well (coordinatization theorems, etc.).
- The most difficult case: non-classical superalgebras in positive characteristic.

Char 0 case

A.Stern: $K_{10}, \operatorname{Kan}(n),(n>4)$ are rigid, that is, have only regular irreducile supermodules. (Kan(n)- ???)
C.Martínez and E.Zelmanov: All irreducible bimodules over finite dimensional simple Jordan superalgebras over an algebraically closed field of characteristic 0 were classified. Matrix Jordan superalgebras of big order $(n>2)$ and the superalgebra $J(V, f)$ behave similar to the non-graded case and are of finite type, that is, have a finite number of indecomposable supermodules, and each of them is irreducible. The same is true for the superalgebra $M_{2}[\sqrt{1}]^{(+)}$. The superalgebras $K_{3}, D_{t}, M_{11+}^{(+)}$, J trp(2) have infinite number of irreducible supermodules.

Char 0 case

A.Stern: $K_{10}, \operatorname{Kan}(n),(n>4)$ are rigid, that is, have only regular irreducile supermodules. (Kan(n)- ???)
C.Martínez and E.Zelmanov: All irreducible bimodules over finite dimensional simple Jordan superalgebras over an algebraically closed field of characteristic 0 were classified.
Matrix Jordan superalgebras of big order $(n>2)$ and the
superalgebra $J(V, f)$ behave similar to the non-graded case
and are of finite type, that is, have a finite number of
indecomposable supermodules, and each of them is
irreducible. The same is true for the superalgebra $M_{2}[\sqrt{1}]^{(+)}$
The superalgebras K_{3}. D_{t}
Jtrp(2) have infinite number
of irreducible supermodules.

Char 0 case

A.Stern: $K_{10}, \operatorname{Kan}(n),(n>4)$ are rigid, that is, have only regular irreducile supermodules. (Kan(n)- ???)
C.Martínez and E.Zelmanov: All irreducible bimodules over finite dimensional simple Jordan superalgebras over an algebraically closed field of characteristic 0 were classified.
Matrix Jordan superalgebras of big order $(n>2)$ and the superalgebra $J(V, f)$ behave similar to the non-graded case and are of finite type, that is, have a finite number of indecomposable supermodules, and each of them is irreducible. The same is true for the superalgebra $M_{2}[\sqrt{1}]^{(+)}$.

The superalgebras $K_{3}, D_{t}, M_{111}^{(+)}$, Jtrp(2) have infinite number
of irreducible supermodules.

Char 0 case

A.Stern: $K_{10}, \operatorname{Kan}(n),(n>4)$ are rigid, that is, have only regular irreducile supermodules. (Kan(n)- ???)
C.Martínez and E.Zelmanov: All irreducible bimodules over finite dimensional simple Jordan superalgebras over an algebraically closed field of characteristic 0 were classified.
Matrix Jordan superalgebras of big order $(n>2)$ and the superalgebra $J(V, f)$ behave similar to the non-graded case and are of finite type, that is, have a finite number of indecomposable supermodules, and each of them is irreducible. The same is true for the superalgebra $M_{2}[\sqrt{1}]^{(+)}$.
The superalgebras $K_{3}, D_{t}, M_{1 \mid 1}^{(+)}$, $\operatorname{Jtrp}(2)$ have infinite number of irreducible supermodules.

M.Trushina: bimodules over K_{3}, D_{t}

Bimodules over the superalgebras K_{3}, D_{t} were also classified by M.Trushina. She does not use the TKK-functor, but also applied Lie Theory (representations of $s /(2)$).

> She classified also irreducible bimodules over K_{3}, D_{t} in the case of char p>2, where she applied Rudakov-Shafarevich's classification of irreducible $s /(2)$-modules in positive characteristic.

M.Trushina: bimodules over K_{3}, D_{t}

Bimodules over the superalgebras K_{3}, D_{t} were also classified by M.Trushina. She does not use the TKK-functor, but also applied Lie Theory (representations of $s /(2)$).
She classified also irreducible bimodules over K_{3}, D_{t} in the case of char $p>2$, where she applied Rudakov-Shafarevich's classification of irreducible $s l(2)$-modules in positive characteristic.

Characteristic $p>2$ 2: coordinatization theorem

M.C. López Díaz and I.Sh.;

C.Martínez, I.Sh., and E.Zelmanov:

Coordinatization theorem for Jordan superalgebras: Let J be a unital Jordan superalgebra such that $J_{0} \supseteq$ $H_{n}(F) \ni 1_{J}, n>2$. Then there exists an alternative superalgebra with a nuclear superinvolution $(D, *)$ such that $J \cong H_{n}(D, *)$.

Corollary

Irreducible bimodules over $M_{n}[\sqrt{ } 1]^{(+)}$, Jtrp(n) are classified for
$n>2$ in characteristic $p>2$
Open question: Bimodules over $\operatorname{Josp}(n, 2 m), M_{n \mid m}^{(+)}$in positive
characteristic.

Characteristic $p>2$ 2: coordinatization theorem

M.C. López Díaz and I.Sh.;

C.Martínez, I.Sh., and E.Zelmanov:

Coordinatization theorem for Jordan superalgebras:
Let J be a unital Jordan superalgebra such that $J_{0} \supseteq$ $H_{n}(F) \ni 1_{J}, n>2$. Then there exists an alternative superalgebra with a nuclear superinvolution ($D, *$) such that $J \cong H_{n}(D, *)$.

Corollary

Irreducible bimodules over $M_{n}[\sqrt{1}]^{(+)}, \operatorname{Jtrp}(n)$ are classified for $n>2$ in characteristic $p>2$.
Open question: Bimodules over Josp($n, 2 m$), $M_{n \mid m}^{(+)}$in positive characteristic.

Superalgebra $\operatorname{Kan}(n)$, char 0 case, $n>4$

We have $\operatorname{Kan}(n)=J\left(G_{n},[],\right)$, where G_{n} is the Grassman algebra on anticommuting variables e_{1}, \ldots, e_{n} with the bracket $[f, g]=\sum_{i=1}^{n}(-1)^{|g|} \frac{\partial f}{\partial e_{i}} \frac{\partial g}{\partial e_{i}}$.
Let $A=G_{n}[t]$ be the algebra of polynomials over G_{n}. Extend the bracket on A by setting $\left[t, e_{i}\right]=0,[t, 1]=\alpha t, \alpha \in F$. In the Kantor double $J(A,[])=,A \oplus \bar{A}$, the subsuperalgebra $G_{n} \oplus \bar{G}_{n}$ is isomorphic to $\operatorname{Kan}(n)$, whereas the subspace $V(\alpha)=t G_{n} \oplus \overline{t G_{n}}$ is an irreducible unital bimodule over it.

Theorem (C.Martínez and E.Zelmanov)

Every irreducible finite dimensional Jordar Kan(n)-bimodule for
$n>4$ and char $F=0$ is (up to change of parity) isomorphic to

We have $\operatorname{Kan}(n)=J\left(G_{n},[],\right)$, where G_{n} is the Grassman algebra on anticommuting variables e_{1}, \ldots, e_{n} with the bracket $[f, g]=\sum_{i=1}^{n}(-1)^{|g|} \frac{\partial f}{\partial e_{i}} \frac{\partial g}{\partial e_{i}}$.
Let $A=G_{n}[t]$ be the algebra of polynomials over G_{n}. Extend the bracket on A by setting $\left[t, e_{i}\right]=0,[t, 1]=\alpha t, \alpha \in F$. In the Kantor double $J(A,[])=,\boldsymbol{A} \oplus \overline{\boldsymbol{A}}$, the subsuperalgebra $G_{n} \oplus \bar{G}_{n}$ is isomorphic to $\operatorname{Kan}(n)$, whereas the subspace $V(\alpha)=t G_{n} \oplus \overline{t G_{n}}$ is an irreducible unital bimodule over it.
\square

Superalgebra $\operatorname{Kan}(n)$, char 0 case, $n>4$

We have $\operatorname{Kan}(n)=J\left(G_{n},[],\right)$, where G_{n} is the Grassman algebra on anticommuting variables e_{1}, \ldots, e_{n} with the bracket $[f, g]=\sum_{i=1}^{n}(-1)^{|g|} \frac{\partial f}{\partial e_{i}} \frac{\partial g}{\partial e_{i}}$.
Let $A=G_{n}[t]$ be the algebra of polynomials over G_{n}. Extend the bracket on A by setting $\left[t, e_{i}\right]=0,[t, 1]=\alpha t, \alpha \in F$. In the Kantor double $J(A,[])=,A \oplus \bar{A}$, the subsuperalgebra $G_{n} \oplus \bar{G}_{n}$ is isomorphic to $\operatorname{Kan}(n)$, whereas the subspace $V(\alpha)=t G_{n} \oplus \overline{t G_{n}}$ is an irreducible unital bimodule over it.

Theorem (C.Martínez and E.Zelmanov)

Every irreducible finite dimensional Jordan Kan(n)-bimodule for $n>4$ and char $F=0$ is (up to change of parity) isomorphic to $V(\alpha)$.

Superalgebra $\operatorname{Kan}(n)$, char $p>2, n \geq 2$

O.Folleco Solarte and I.Sh.:

Every irreducible finite dimensional Jordan $\operatorname{Kan}(n)$-bimodule for $n \geq 2$ and char $F \neq 2$ is (up to change of parity) isomorphic to $V(\alpha)$.

A linear operator E on a unital superalgebra A is called a generalized derivation of A if $E(a b)=E(a) b+a E(b)-a b E(1)$. Let $P=\left\langle P_{0} \oplus P_{1},\{\},\right\rangle$ be a unital Poisson superalgebra, $E: P \rightarrow P$ be a generalized derivation of P which satisfies also the condition $E(\{p, g\})=\{E(p), q\}+\{p, E(q)\}+\{p, q\} E(1)$. Furthermore, let (A, D) be a commutative associative algebra with a derivation D. Define the following bracket on the tensor product $P \otimes A$:
$\langle p \otimes a, q \otimes b\rangle=\{p, q\} \otimes a b+E(p) q \otimes a D(b)-(-1)^{|p||q|} E(q) p \otimes D(a) b$
where $p, q \in P ; a, b \in A$.
The defined bracket is a Jordan bracket on the commutative and associative superalgebra $P \otimes A=\left(P_{0} \otimes A\right) \oplus\left(P_{1} \otimes A\right)$.

$V(\alpha)$ is Jordan

Define a linear operator E on the Poisson superalgebra G_{n} by setting $E\left(e_{i_{1}} \cdots e_{i_{k}}\right)=(k-1) e_{i_{1}} \cdots e_{i_{k}}$, then E is a generalized derivation of G_{n} that satisfied the above conditions on the bracket $\{$,$\} . Let A=F[t]$ and $D_{\alpha}=-\alpha t \frac{d}{d t} \in \operatorname{Der} A$, then the superalgebra $\left(G_{n},[],\right) \otimes\left(A, D_{\alpha}\right)$ with the bracket defined as above is isomorphic to $\left(G_{n}[t],[],\right)$. Therefore, the bracket $[$,$] on$ $G[t]$ is Jordan, and the supermodule $V(\alpha)$ is Jordan.

[^0]: Example (Hermitian superalgebras)
 $(A, *)$ associative superalgebra with superinvolution $H(A, *)=\left\{a \in A \mid a^{*}=a\right\}$ is a (Jordan) subsuperalgebra of

