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Jordan Algebras.

Pascual Jordan, 1933:

Definition
Jordan algebra is an algebra over a field of characteristic not 2
that satisfies the identities

xy = yx ,
(x2y)x = x2(yx).

A associative with a product ab =⇒ A(+) = 〈A,+, ·〉 is Jordan,
where a · b = 1

2(ab + ba).

A Jordan algebra J is called special if there exists an
associative algebra A such that J ⊆ A(+).
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Examples:

Example ( Algebras of Hermitian type)

(A, ∗) associative algebra with involution ∗,
H(A, ∗) = {a ∈ A |a∗ = a} is a (Jordan) subalgebra of A(+).

(A, ∗) is ∗-simple =⇒ H(A, ∗) is simple.

Example ( Algebras of Clifford type (spin-factors))

V a vector space over a field F , f : V × V → F a symmetric
bilinear form, J = F · 1⊕V such that 1J = 1, u · v = f (u, v)1 for
u, v ∈ V . Then J = J(V , f ) is a Jordan algebra. If dim V > 1
and f is non-degenerate, then J(V ,F ) is simple
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Examples:

Example ( Algebras of Albert type)

(O, ∗) an algebra of (generalized) octonions with the standard
involution, H(O3, ∗) the space of ∗-hermitian 3× 3 matrices
over O. Then H(O3, ∗) is a simple non-special Jodan algebra
with respect to multiplication a · b = 1

2(ab + ba).

A Jordan algebra J is of Albert type if J = F̄ ⊗ J ∼= H(O3, ∗)
where F̄ is the algebraic closure of the field F .

Theorem (E.Zelmanov)
Every simple Jordan algebra is of Hermitian, Clifford, or Albert
type.
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Superalgebras

A superalgebra, in general, is a Z2-graded algebra,
A = A0 ⊕ A1, AiAj ⊆ Ai+j(mod 2).

Examples
C = R⊕ Ri , C0 = R, C1 = Ri ;
A an algebra =⇒ A[

√
1] = A⊕ Au (A-double),

(A[
√

1])0 = A, (A[
√

1])1 = Au, u(=
√

1) central with u2 = 1;
Grassmann algebra G = alg 〈1,e1,e2, · · · |eiej = −ejei〉,
G = G0 ⊕G1.

Grassmann envelope G(A) = G0 ⊗ A0 + G1 ⊕ A1.
A superalgebra A = A0 + A1 is aM-superalgebra if G(A) ∈M
(M = Assoc, Lie, Jord , etc).
A ∈M =⇒ G ⊗ A = (G0 ⊗ A)⊕ (G1 ⊗ A) is aM-superalgebra.
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Associative superalgebras

Theorem (C.T.C.Wall, 1963)
Every simple finite-dimensional associative superalgebra over
an algebraically closed field F is isomorphic to one of the
following superalgebras:

• A = Mm|n(F ), A0̄ =

{(
? 0
0 ?

)
m
n

}
, A1̄ =

{(
0 ?
? 0

)
m
n

}
,

• A = Mn(F )[
√

1 ], the doubled matrix algebra.

In general, if A ∈M then the A-double A[
√

1] is not an
M-superalgebra.
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Jordan superalgebras

A = A0 ⊕ A1 associative superalgebra with a product ab =⇒
A(+) = 〈A,+, ·〉 is a Jordan superalgebra , where
a · b = 1

2(ab + (−1)|a||b|ba), |a| = i if a ∈ Ai .

Example

Mn(F )[
√

1](+) (n > 1), Mm|n(F )(+) are simple Jordan
superalgebras.

A linear mapping ∗ : A0 ⊕ A1 → A0 ⊕ A1 is called a
superinvolution if (ab)∗ = (−1)|a||b|b∗a∗, (a∗)∗ = a.

Example (Hermitian superalgebras)

(A, ∗) associative superalgebra with superinvolution ∗,
H(A, ∗) = {a ∈ A |a∗ = a} is a (Jordan) subsuperalgebra of
A(+).
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Jordan superalgebras

Mn|n(F ) has a superinvolution (supertransposition)

trp :

(
A B
C D

)
7→
(

Dt −Bt

Ct At

)
Mn|2m(F ) has an ortho-symplectic superinvolution

osp :

(
A B
C D

)
7→
(

In 0
0 U

)(
At −Ct

Bt Dt

)(
In 0
0 −U

)
,

where In is the identity matrix of order n and U =

(
0 −Im
Im 0

)
.
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Jordan superalgebras

Examples
Hermitian simple Jordan superalgebras
Jtrp(n) = H(Mn|n, trp), (n > 1), Josp(n,2m) = H(Mn|2m,osp).

Example (Superalgera of superform)

V = V0 ⊕ V1 a vector superspace over a field F , f : V × V → F
a supersymmetric bilinear form, that is, f |V0 is symmetric, f |V1 is
skew-symmetric, f (Vi ,Vj) = 0 if i 6= j . Then J(V , f ) = F · 1⊕ V
such that 1J = 1, u · v = f (u, v)1 for u, v ∈ V is a Jordan
superalgebra, J0 = F · 1⊕ V0, J1 = V1. If f is non-degenerate
then J(V , f ) is simple, except the case dim V = 1, V = V0.
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Jordan superalgebras

Example (Kaplansky superalgebra K3)

K3 = Fe + (Fx + Fy), where e2 = e, ex = 1
2x , ey = 1

2y , xy = e.
The superalgebra K3 is simple not unital.

Example (Superalgebra Dt )

Dt = (Fe1 + Fe2) + (Fx + Fy) with the product: e2
i = ei , e1e2 =

0, eix = 1
2x , eiy = 1

2y , xy = e1 + te2, t ∈ F , i = 1,2. The
superalgebra Dt is simple if t 6= 0. In the case t = −1, the
superalgebra D−1 is isomorphic to M1|1(F )(+).

Example (Kac superalgebra K10)
V. Kac introduced the simple 10-dimensional superalgebra K10
that is related (via the Tits-Kantor-Koecher construction) to the
exceptional 40-dimensional Lie superalgebra.
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Kantor double

Example (Kantor double)
Let A = A0 ⊕ A1 be an associative commutative superalgebra
equipped with a graded super-anticommutative bilinear map
(bracket)

[, ] : A⊗ A→ A, [Ai ,Aj ] ⊆ Ai+j .

A Kantor double is a direct sum of vector spaces
J(A, [, ]) = A⊕ Ā, with the product

a · b = ab, a · b̄ = ab, b̄ · a = (−1)|a|ba, ā · b̄ = (−1)|b|[a,b].

J = J(A, [, ]) is a commutative superalgebra under the grading
J0 = A0 ⊕ Ā1, J1 = A1 ⊕ Ā0. A bracket [, ] is called a Jordan
bracket on A if J(A, [, ]) is a Jordan superalgebra.
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Kantor double

I.Kantor showed that every Poisson bracket is Jordan. In
particular, let V be an n-dimensional vector space with a basis
e1, . . . ,en, n ≥ 2. Consider the Poisson bracket on the
Grassmann superalgebra Gn = G(V ) :

[f ,g] =
n∑

i=1

(−1)|g| ∂f
∂ei

∂g
∂ei
.

The Jordan superalgebra Kan(n) = J(G(V ), [, ]) is simple,
dim(Kan(n)) = 2n+1.
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Theorem (V.Kac, with a rectification of I.Kantor)
Every finite dimensional simple Jordan superalgebra over an
algebraically closed field of characteristic 0 is isomorphic to one
of the superalgebras

Mn[
√

1](+), M(+)
n|m , Jtrp(n), (n > 1), Josp(n,2m), J(V , f )

K3, Dt , K10, Kan(n).

Finite dimensional simple Jordan superalgebras in positive
characteristic were classified in papers by E.Zelmanov,
C.Martínez, and M.Racine. In this case appear some new
superalgebras, namely, the Cheng-Kac superalgebra JCK6,
Kantor doubles J(A, [, ]) where the Jordan bracket [, ] is not
necessary Poisson, and exceptional matrix superalgebras in
characteristic 3.
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Representations of Jordan algebras

S.Eilenberg, 1947:
Let A be an algebra and V be an A-bimodule. The split null
extension E(A,V ) = A⊕ V is an algebra where A is a
subalgebra, V 2 = 0, and the products a · v , v · a for a ∈ A and
v ∈ V are given by the bimodule action.
If A ∈M (M = Assoc, Lie, Jord , etc) then the bimodule V is
called an AM-bimodule if E(A,V ) ∈M.
The universal multiplicative enveloping algebra UM(A) is an
associative algebra such that AM-bimod∼= UM(A)-mod.

Ivan Shestakov Structure and representations of Jordan superalgebras



Representations of Jordan algebras

S.Eilenberg, 1947:
Let A be an algebra and V be an A-bimodule. The split null
extension E(A,V ) = A⊕ V is an algebra where A is a
subalgebra, V 2 = 0, and the products a · v , v · a for a ∈ A and
v ∈ V are given by the bimodule action.
If A ∈M (M = Assoc, Lie, Jord , etc) then the bimodule V is
called an AM-bimodule if E(A,V ) ∈M.
The universal multiplicative enveloping algebra UM(A) is an
associative algebra such that AM-bimod∼= UM(A)-mod.

Ivan Shestakov Structure and representations of Jordan superalgebras



Representations of Jordan algebras

N.Jacobson:
U(J) = UJord (J).

dim J <∞ =⇒ dim U(J) <∞;
J semisimple⇐⇒ U(J) is semisimple⇐⇒ every bimodule
is comletely reducible;
dim J <∞ =⇒ J has a finite number of irreducible
bimodules;
Jn = 0 =⇒ J has no irreducible bimodules;
Finite dimensional irreducible bimodules were classified.
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Coordinatization Theorem

L.Kronecker: A associative, A ⊇ Mn(F ) 3 1A =⇒ A ∼= Mn(B)
A-bimod ∼= B-bimod.

N.Jacobson: J Jordan, J ⊇ Hn(F ) 3 1J =⇒ J ∼= Hn(D), where
D is an alternative algebra with a nuclear involution.

Hn(D)Jord -bimod ∼= (D, ∗)Alt -bimod.
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Jordan supermodules

A supermodule V = V0 ⊕ V1 over a Jordan superalgebra
J = J0 ⊕ J1 is called a Jordan supermodule if the split null
extension E(J,V ) = J + V = (J0 + V0) + (J1 + V1) is a Jordan
superalgebra.
Difference: a nilpotent Jordan superalgebra may have
irreducible supermodule.
Till now, only irreducible bimodules over finite dimensional
simple superalgebras were considered.

Ivan Shestakov Structure and representations of Jordan superalgebras



Jordan supermodules

A supermodule V = V0 ⊕ V1 over a Jordan superalgebra
J = J0 ⊕ J1 is called a Jordan supermodule if the split null
extension E(J,V ) = J + V = (J0 + V0) + (J1 + V1) is a Jordan
superalgebra.
Difference: a nilpotent Jordan superalgebra may have
irreducible supermodule.
Till now, only irreducible bimodules over finite dimensional
simple superalgebras were considered.

Ivan Shestakov Structure and representations of Jordan superalgebras



Jordan supermodules

In char F = 0 case, the TKK (Tits-Kantor-Koecher) functor
admits to apply results from representation theory of Lie
superalgebras.
For superalgebras of classical type (Hermitian and Clifford
superalgebras) sometimes the classical methods work in
positive characteristic as well (coordinatization theorems,
etc.).
The most difficult case: non-classical superalgebras in
positive characteristic.
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Char 0 case

A.Stern: K10, Kan(n), (n > 4) are rigid, that is, have only
regular irreducile supermodules. (Kan(n)- ???)
C.Martínez and E.Zelmanov: All irreducible bimodules over
finite dimensional simple Jordan superalgebras over an
algebraically closed field of characteristic 0 were classified.
Matrix Jordan superalgebras of big order (n > 2) and the
superalgebra J(V , f ) behave similar to the non-graded case
and are of finite type, that is, have a finite number of
indecomposable supermodules, and each of them is
irreducible. The same is true for the superalgebra M2[

√
1](+).

The superalgebras K3, Dt , M(+)
1|1 , Jtrp(2) have infinite number

of irreducible supermodules.
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1|1 , Jtrp(2) have infinite number

of irreducible supermodules.
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M.Trushina: bimodules over K3, Dt

Bimodules over the superalgebras K3, Dt were also classified
by M.Trushina. She does not use the TKK -functor, but also
applied Lie Theory (representations of sl(2)).
She classified also irreducible bimodules over K3, Dt in the
case of char p > 2, where she applied Rudakov-Shafarevich’s
classification of irreducible sl(2)-modules in positive
characteristic.
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Characteristic p > 2: coordinatization theorem

M.C. López Díaz and I.Sh.;
C.Martínez, I.Sh., and E.Zelmanov:
Coordinatization theorem for Jordan superalgebras:
Let J be a unital Jordan superalgebra such that J0 ⊇
Hn(F ) 3 1J , n > 2. Then there exists an alternative su-
peralgebra with a nuclear superinvolution (D, ∗) such that
J ∼= Hn(D, ∗).

Corollary

Irreducible bimodules over Mn[
√

1](+), Jtrp(n) are classified for
n > 2 in characteristic p > 2.

Open question: Bimodules over Josp(n,2m), M(+)
n|m in positive

characteristic.
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Superalgebra Kan(n), char 0 case, n > 4

We have Kan(n) = J(Gn, [, ]), where Gn is the Grassman
algebra on anticommuting variables e1, . . . ,en with the bracket
[f ,g] =

∑n
i=1(−1)|g| ∂f

∂ei

∂g
∂ei
.

Let A = Gn[t ] be the algebra of polynomials over Gn. Extend
the bracket on A by setting [t ,ei ] = 0, [t ,1] = αt , α ∈ F .
In the Kantor double J(A, [, ]) = A⊕ Ā, the subsuperalgebra
Gn ⊕Gn is isomorphic to Kan(n), whereas the subspace
V (α) = tGn ⊕ tGn is an irreducible unital bimodule over it.

Theorem (C.Martínez and E.Zelmanov)

Every irreducible finite dimensional Jordan Kan(n)-bimodule for
n > 4 and char F = 0 is (up to change of parity) isomorphic to
V (α).
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Superalgebra Kan(n), char p > 2, n ≥ 2

O.Folleco Solarte and I.Sh.:
Every irreducible finite dimensional Jordan Kan(n)-bimodule
for n ≥ 2 and char F 6= 2 is (up to change of parity) isomor-
phic to V (α).
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V (α) is Jordan

A linear operator E on a unital superalgebra A is called a
generalized derivation of A if E(ab) = E(a)b + aE(b)− abE(1).
Let P = 〈P0 ⊕ P1, {, }〉 be a unital Poisson superalgebra,
E : P → P be a generalized derivation of P which satisfies also
the condition E({p,g}) = {E(p),q}+ {p,E(q)}+ {p,q}E(1).
Furthermore, let (A,D) be a commutative associative algebra
with a derivation D. Define the following bracket on the tensor
product P ⊗ A:

〈p⊗a,q⊗b〉 = {p,q}⊗ab+E(p)q⊗aD(b)−(−1)|p||q|E(q)p⊗D(a)b

where p,q ∈ P; a,b ∈ A.

The defined bracket is a Jordan bracket on the commutative
and associative superalgebra P ⊗ A = (P0 ⊗ A)⊕ (P1 ⊗ A).
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V (α) is Jordan

Define a linear operator E on the Poisson superalgebra Gn by
setting E(ei1 · · · eik ) = (k − 1)ei1 · · · eik , then E is a generalized
derivation of Gn that satisfied the above conditions on the
bracket {, }. Let A = F [t ] and Dα = −αt d

dt ∈ Der A, then the
superalgebra (Gn, [, ])⊗ (A,Dα) with the bracket defined as
above is isomorphic to (Gn[t ], [, ]). Therefore, the bracket [, ] on
G[t ] is Jordan, and the supermodule V (α) is Jordan.
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