Finite Groups, Designs and Codes - Method 2

J Moori
School of Mathematical Sciences, University of KwaZulu-Natal Pietermaritzburg 3209, South Africa

AIMS -CIMPA 23 July 2015

Finite Groups, Designs and Codes - Method 2

J Moori
School of Mathematical Sciences, University of KwaZulu-Natal Pietermaritzburg 3209, South Africa

AIMS -CIMPA 23 July 2015

Outline

(1) Abstract
(2) Introduction
(3) Method 2

4 Some 1-designs and Codes from A_{7}
4 Designs and codes from $P S L_{2}(q)$
(5) $G=P S L_{2}(q)$ of degree $q+1, M=G_{1}$
(6) References

Abstract

In this talk we discuss the second method for constructing codes and designs from finite groups (mostly simple finite groups). Background materials and results together with the full discussions on the first method were discussed in previous lectures.

The second method introduces a technique from which a large number of non-symmetric 1-designs could be constructed.

- Let G be a finite group, M be a maximal subgroup of G and $C_{g}=[g]=n X$ be the conjugacy class of G containing g.
- We construct $1-(V, k, \lambda)$ designs $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, where $\mathcal{P}=n X$ and $\mathcal{B}=\left\{(M \cap n X)^{y} \mid y \in G\right\}$. The parameters v λ and further properties of \mathcal{D} are determined.
- We also study codes associated with these designs. In Subsections $5.1,5.2$ and 5.3 we apply the to the arouns $A_{7}, P S \operatorname{In}(a)$ and J_{4} resnectivel

The second method introduces a technique from which a large number of non-symmetric 1-designs could be constructed.

- Let G be a finite group, M be a maximal subgroup of G and $C_{g}=[g]=n X$ be the conjugacy class of G containing g.
- We construct $1-(v, k, \lambda)$ designs $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, where $\mathcal{P}=n X$ and $\mathcal{B}=\left\{(M \cap n X)^{y} \mid y \in G\right\}$. The parameters v, k, λ and further properties of \mathcal{D} are determined.
- We also study codes associated with these designs. In

The second method introduces a technique from which a large number of non-symmetric 1-designs could be constructed.

- Let G be a finite group, M be a maximal subgroup of G and $C_{g}=[g]=n X$ be the conjugacy class of G containing g.
- We construct $1-(v, k, \lambda)$ designs $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, where $\mathcal{P}=n X$ and $\mathcal{B}=\left\{(M \cap n X)^{y} \mid y \in G\right\}$. The parameters v, k, λ and further properties of \mathcal{D} are determined.
- We also study codes associated with these designs. In Subsections 5.1, 5.2 and 5.3 we apply the second method to the groups $A_{7}, P S L_{2}(q)$ and J_{1} respectively.

Construction of 1-Designs and Codes from Maximal Subgroups and Conjugacy Classes of Elements

Here we assume G is a finite simple group, M is a maximal subgroup of $G, n X$ is a conjugacy class of elements of order n in G and $g \in n X$. Thus $C_{g}=[g]=n X$ and $|n X|=\left|G: C_{G}(g)\right|$. Let $\chi_{M}=\chi(G \mid M)$ be the permutation character afforded by the action of G on Ω, the set of all conjugates of M in G. Clearly if g is not conjugate to any element in M, then $\chi_{M}(g)=0$.
The construction of our 1 -designs is based on the following theorem.

Theorem (12)

Let G be a finite simple group, M a maximal subgroup of G and $n X$ a conjugacy class of elements of order n in G such that $M \cap n X \neq \emptyset$. Let $\mathcal{B}=\left\{(M \cap n X)^{y} \mid y \in G\right\}$ and $\mathcal{P}=n X$. Then we have a $1-\left(|n X|,|M \cap n X|, \chi_{M}(g)\right)$ design \mathcal{D}, where $g \in n X$. The group G acts as an automorphism group on \mathcal{D}, primitive on blocks and transitive (not necessarily primitive) on points of \mathcal{D}.

Proof: First note that $\mathcal{B}=\left\{M^{y} \cap n X \mid y \in G\right\}$. We claim that $M^{y} \cap n X=M \cap n X$ if and only if $y \in M$ or $n X=\left\{1_{G}\right\}$. Clearly if $y \in M$ or $n X=\left\{1_{G}\right\}$, then $M^{Y} \cap n X=M \cap n X$. Conversely suppose there exits $y \notin M$ such that $M^{y} \cap n X=M \cap n X$.

Proof Thm 12 Cont.

Then maximality of M in G implies that $G=<M, y>$ and hence $M^{z} \cap n X=M \cap n X$ for all $z \in G$. We can deduce that $n X \subseteq M$ and hence $<n X>\leq M$. Since $<n X>$ is a normal subgroup of G and G is simple, we must have $<n X>=\left\{1_{G}\right\}$. Note that maximality of M and the fact $<n X>\leq M$, excludes the case $\langle n X>=G$.
From above we deduce that $b=|\mathcal{B}|=|\Omega|=[G: M]$. If $B \in \mathcal{B}$,then

$$
k=|B|=|M \cap n X|=\sum_{i=1}^{k}\left|\left[x_{i}\right]_{M}\right|=|M| \sum_{i=1}^{k} \frac{1}{\left|C_{M}\left(x_{i}\right)\right|},
$$

where $x_{1}, x_{2}, \ldots, x_{k}$ are the representatives of the conjugacy classes of M that fuse to a.

Proof Thm 12 Cont.

Let $v=|\mathcal{P}|=|n X|=\left[G: C_{G}(g)\right]$. Form the design
$\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$, with point set \mathcal{P}, block set \mathcal{B} and incidence \mathcal{I} given by $x \mathcal{I} B$ if and only if $x \in B$. Since the number of blocks containing an element x in \mathcal{P} is $\lambda=\chi_{M}(x)=\chi_{M}(g)$, we have produced a $1-(v, k, \lambda)$ design \mathcal{D}, where $v=|n X|$,
$k=|M \cap n X|$ and $\lambda=\chi_{M}(g)$.
The action of G on blocks arises from the action of G on Ω and hence the maximality of M in G implies the primitivity. The action of G on $n X$, that is on points, is equivalent to the action of G on the cosets of $C_{G}(g)$. So the action on points is primitive if and only if $C_{G}(g)$ is a maximal subgroup of G. \square

Remark (4)

Since in a $1-(v, k, \lambda)$ design \mathcal{D} we have $k b=\lambda v$, we deduce that

$$
k=|M \cap n X|=\frac{\chi_{M}(g) \times|n X|}{[G: M]} .
$$

Also note that $\tilde{\mathcal{D}}$, the complement of \mathcal{D}, is $1-(v, v-k, \tilde{\lambda})$ design, where $\tilde{\lambda}=\lambda \times \frac{v-k}{k}$.

Remark (5)
If $\lambda=1$, then \mathcal{D} is a $1-(|n X|, k, 1)$ design. Since $n X$ is the disjoint union of b blocks each of size k, we have

Remark (4)

Since in a $1-(v, k, \lambda)$ design \mathcal{D} we have $k b=\lambda v$, we deduce that

$$
k=|M \cap n X|=\frac{\chi_{M}(g) \times|n X|}{[G: M]} .
$$

Also note that $\tilde{\mathcal{D}}$, the complement of \mathcal{D}, is $1-(v, v-k, \tilde{\lambda})$ design, where $\tilde{\lambda}=\lambda \times \frac{v-k}{k}$.

Remark (5)

If $\lambda=1$, then \mathcal{D} is a $1-(|n X|, k, 1)$ design. Since $n X$ is the disjoint union of b blocks each of size k, we have $\operatorname{Aut}(\mathcal{D})=S_{k}$ < $S_{b}=\left(S_{k}\right)^{b}: S_{b}$. Clearly In this case for all p, we have $C=C_{p}(\mathcal{D})=[|n X|, b, k]_{p}$, with $\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})$.

Remark (6)

The designs \mathcal{D} constructed by using Theorem 12 are not symmetric in general. In fact \mathcal{D} is symmetric if and only if

$$
\begin{aligned}
& b=|\mathcal{B}|=v=|\mathcal{P}| \Leftrightarrow[G: M]=|n X| \Leftrightarrow \\
& {[G: M]=\left[G: C_{G}(g)\right] \Leftrightarrow|M|=\left|C_{G}(g)\right| .}
\end{aligned}
$$

Designs and Codes from A_{7}

A_{7} has five conjugacy classes of maximal subgroups, which are listed in Table 6. It has also 9 conjugacy classes of elements some of which are listed in Table 7.

Table 6: Maximal subgroups of A_{7}

No.	Structure	Index	Order
$\operatorname{Max}[1]$	A_{6}	7	360
$\operatorname{Max}[2]$	$P S L_{2}(7)$	15	168
$\operatorname{Max}[3]$	$P S L_{2}(7)$	15	168
$\operatorname{Max}[4]$	S_{5}	21	120
$\operatorname{Max}[5]$	$\left(A_{4} \times 3\right): 2$	35	72

Table 7: Some of the conjugacy classes of A_{7}

$n X$	$\|n X\|$	$C_{G}(g)$	Maximal Centralizer
$2 A$	105	$D_{8}: 3$	No
$3 A$	70	$A_{4} \times 3 \cong\left(2^{2} \times 3\right): 3$	No
$3 B$	280	3×3	No

We apply the Theorem 12 to the above maximal subgroups and few conjugacy classes of elements of A_{7} to construct several non-symmetric 1 -designs. The corresponding binary codes are also constructed. In the following we only discuss one example (see Subsection 5.1.1, main paper). For other examples see Subsections 5.1.2 to 5.1.5 of the main paper.

$G=A_{7}, M=A_{6}$ and $n X=3 A: 1-(70,40,4)$ Design

- Let $G=A_{7}, M=A_{6}$ and $n X=3 A$. Then

$$
b=[G: M]=7, v=|3 A|=70, k=|M \cap 3 A|=40 .
$$

- Also using the character table of A_{7}, we have

and for $g \in 3 A$

- We produce a non-symmetric

$G=A_{7}, M=A_{6}$ and $n X=3 A: 1-(70,40,4)$ Design

- Let $G=A_{7}, M=A_{6}$ and $n X=3 A$. Then

$$
b=[G: M]=7, v=|3 A|=70, k=|M \cap 3 A|=40 .
$$

- Also using the character table of A_{7}, we have

$$
\chi_{M}=\chi_{1}+\chi_{2}=\underline{1 a}+\underline{6 a}
$$

and for $g \in 3 A$

$$
\chi_{M}(g)=1+3=4=\lambda
$$

$G=A_{7}, M=A_{6}$ and $n X=3 A: 1-(70,40,4)$ Design

- Let $G=A_{7}, M=A_{6}$ and $n X=3 A$. Then

$$
b=[G: M]=7, v=|3 A|=70, k=|M \cap 3 A|=40 .
$$

- Also using the character table of A_{7}, we have

$$
\chi_{M}=\chi_{1}+\chi_{2}=\underline{1 a}+\underline{6 a}
$$

and for $g \in 3 A$

$$
\chi_{M}(g)=1+3=4=\lambda
$$

- We produce a non-symmetric $1-(70,40,4)$ design \mathcal{D}.
- A_{7} acts primitively on the 7 blocks.
- $C_{A_{7}}(g)=A_{4} \times 3$ is not maximal in A_{7}, sits in the maximal subgroup $\left(A_{4} \times 3\right): 2$ with index two. - Thus A_{7} acts imprimitivly on the 70 po nts.
- A_{7} acts primitively on the 7 blocks.
- $C_{A_{7}}(g)=A_{4} \times 3$ is not maximal in A_{7}, sits in the maximal subgroup $\left(A_{4} \times 3\right): 2$ with index two.
- A_{7} acts primitively on the 7 blocks.
- $C_{A_{7}}(g)=A_{4} \times 3$ is not maximal in A_{7}, sits in the maximal subgroup $\left(A_{4} \times 3\right)$:2 with index two.
- Thus A_{7} acts imprimitivly on the 70 points.
- A_{7} acts primitively on the 7 blocks.
- $C_{A_{7}}(g)=A_{4} \times 3$ is not maximal in A_{7}, sits in the maximal subgroup $\left(A_{4} \times 3\right)$:2 with index two.
- Thus A_{7} acts imprimitivly on the 70 points.
- $\tilde{\mathcal{D}}$ is a $1-(70,30,3)$ design.
- A_{7} acts primitively on the 7 blocks.
- $C_{A_{7}}(g)=A_{4} \times 3$ is not maximal in A_{7}, sits in the maximal subgroup $\left(A_{4} \times 3\right)$:2 with index two.
- Thus A_{7} acts imprimitivly on the 70 points.
- $\tilde{\mathcal{D}}$ is a $1-(70,30,3)$ design.
- $\operatorname{Aut}(\mathcal{D}) \cong 2^{35}: S_{7} \cong 2^{5}$? S_{7},
- A_{7} acts primitively on the 7 blocks.
- $C_{A_{7}}(g)=A_{4} \times 3$ is not maximal in A_{7}, sits in the maximal subgroup $\left(A_{4} \times 3\right)$:2 with index two.
- Thus A_{7} acts imprimitivly on the 70 points.
- $\tilde{\mathcal{D}}$ is a $1-(70,30,3)$ design.
- $\operatorname{Aut}(\mathcal{D}) \cong 2^{35}: S_{7} \cong 2^{5}$ < S_{7},
- $|\operatorname{Aut}(\mathcal{D})|=2^{39} .3^{2} .5 .7$.

$G=A_{7}, M=A_{6}$ and $n X=3 A:[70,6,32]$ Code

Construction using MAGMA shows that the binary code C of this design is a $[70,6,32]$ code. The code C is self-orthogonal with the weight distribution

$$
\langle 0,1\rangle,\langle 32,35\rangle,<40,28\rangle .
$$

Our group A_{7} acts irreducibility on C.

- If W_{i} denote the set of all words in C of weight i, then

$$
C=\left\langle W_{32}\right\rangle=\left\langle W_{40}\right\rangle,
$$

so C is generated by its minimum-weight codewords.

$G=A_{7}, M=A_{6}$ and $n X=3 A:[70,6,32]$ Code

Construction using MAGMA shows that the binary code C of this design is a $[70,6,32]$ code. The code C is self-orthogonal with the weight distribution

$$
\langle 0,1\rangle,\langle 32,35\rangle,<40,28\rangle .
$$

Our group A_{7} acts irreducibility on C.

- If W_{i} denote the set of all words in C of weight i, then

$$
C=\left\langle W_{32}\right\rangle=\left\langle W_{40}\right\rangle,
$$

so C is generated by its minimum-weight codewords.

- $\operatorname{Aut}(C) \cong 2^{35}: S_{8}$ with $|\operatorname{Aut}(C)|=2^{42} .3^{2} .5 .7$, and we note that $\operatorname{Aut}(C) \geq \operatorname{Aut}(\mathcal{D})$ and that $\operatorname{Aut}(\mathcal{D})$ is not a normal subgroup of $\operatorname{Aut}(\mathrm{C})$.
- C^{\perp} is a $[70,64,2]$ code and its weight distribution has been determined. Since the blocks of \mathcal{D} are of even size 40, we have that \jmath meets evenly every vector of C and hence $\jmath \in C^{\perp}$.
- If \bar{W}_{i} denote the set of all codewords in C^{\perp} of weight i then
and
- C^{\perp} is a $[70,64,2]$ code and its weight distribution has been determined. Since the blocks of \mathcal{D} are of even size 40 , we have that \jmath meets evenly every vector of C and hence $\jmath \in C^{\perp}$.
- If \bar{W}_{i} denote the set of all codewords in C^{\perp} of weight i, then $\left|\bar{W}_{2}\right|=35,,\left|\bar{W}_{3}\right|=840,\left|\bar{W}_{4}\right|=14035, \bar{W}_{2} \subseteq \bar{W}_{4}$, $\jmath \in<\bar{W}_{4}>$ and

$$
C^{\perp}=<\bar{W}_{3}>, \operatorname{dim}\left(<\bar{W}_{2}>\right)=35, \operatorname{dim}\left(<\bar{W}_{4}>\right)=63 .
$$

Let $e_{i j}$ denote the 2-cycle
the support of a codeword

- C^{\perp} is a $[70,64,2]$ code and its weight distribution has been determined. Since the blocks of \mathcal{D} are of even size 40 , we have that \jmath meets evenly every vector of C and hence $\jmath \in C^{\perp}$.
- If \bar{W}_{i} denote the set of all codewords in C^{\perp} of weight i, then $\left|\bar{W}_{2}\right|=35,,\left|\bar{W}_{3}\right|=840,\left|\bar{W}_{4}\right|=14035, \bar{W}_{2} \subseteq \bar{W}_{4}$, $\jmath \in<\bar{W}_{4}>$ and

$$
\left.\left.C^{\perp}=<\bar{W}_{3}>, \operatorname{dim}\left(<\bar{W}_{2}\right\rangle\right)=35, \operatorname{dim}\left(<\bar{W}_{4}\right\rangle\right)=63 .
$$

- Let $e_{i j}$ denote the 2-cycle (i, j) in S_{7}, where $\{i, j\}=s\left(\bar{W}_{2}\right)$ is the support of a codeword $\bar{w}_{2} \in \bar{W}_{2}$. Then $e_{i j}\left(\bar{w}_{2}\right)=\bar{W}_{2}$, and $<e_{i j} \mid\{i, j\}=s\left(\bar{W}_{2}\right), \bar{w}_{2} \in \bar{W}_{2}>=2^{35}$.
- Using MAGMA we can easily show that $V=F_{2}^{70}$ is decomposable into indecomposable G-modules of dimension 40 and 30.
- We also have
where C is our 6-dimensional code and C_{14} is an irreducible code of dimension
- Using MAGMA we can easily show that $V=F_{2}^{70}$ is decomposable into indecomposable G-modules of dimension 40 and 30.
- We also have

$$
\operatorname{dim}(\operatorname{Soc}(V))=21, \quad \operatorname{Soc}(V)=<\jmath>\oplus C \oplus C_{14}
$$

where C is our 6-dimensional code and C_{14} is an irreducible code of dimension 14.

Stabilizers: Tables 8 and 9

The structure the stabilizers $\operatorname{Aut}(\mathcal{D})_{w_{l}}$ and $\operatorname{Aut}(C)_{w_{l}}$, where $I \in\{32,40\}$ are listed in Table 8 and 9.

Table 8: Stabilizer of a word w_{l} in $\operatorname{Aut}(\mathcal{D})$

l	$\left\|W_{l}\right\|$	$\operatorname{Aut}(\mathcal{D})_{w_{l}}$
32	35	$2^{35}:\left(A_{4} \times 3\right): 2$
$40(1)$	7	$2^{35}: S_{6}$
$40(2)$	21	$2^{35}:\left(S_{5}: 2\right)$

Table 9: Stabilizer of a word w_{l} in $\operatorname{Aut}(C)$

l	$\left\|W_{l}\right\|$	$\operatorname{Aut}(\mathcal{D})_{w_{l}}$
32	35	$2^{35}:\left(S_{4} \times S_{4}\right): 2$
40	28	$2^{35}:\left(S_{6} \times 2\right)$

Designs and codes from $P S L_{2}(q)$

- The main aim of this section to develop a general approach to $G=P S L_{2}(q)$, where M is the maximal subgroup that is the stabilizer of a point in the natural action of degree $q+1$ on the set Ω. This is fully discussed in Subsection 5.2.1.
- We start this section by applying the results discussed for Method 2, particularly the Theorem 12, to all maximal subarouns and coniuaacy classes of elements of $P S L_{2}(\cdot 1)$ to construct 1-designs and their corresponding binary codes.

Designs and codes from $P S L_{2}(q)$

- The main aim of this section to develop a general approach to $G=P S L_{2}(q)$, where M is the maximal subgroup that is the stabilizer of a point in the natural action of degree $q+1$ on the set Ω. This is fully discussed in Subsection 5.2.1.
- We start this section by applying the results discussed for Method 2, particularly the Theorem 12, to all maximal subgroups and conjugacy classes of elements of $P S L_{2}(11)$ to construct 1 - designs and their corresponding binary codes.

Designs and codes from $P S L_{2}(q)$

- The main aim of this section to develop a general approach to $G=P S L_{2}(q)$, where M is the maximal subgroup that is the stabilizer of a point in the natural action of degree $q+1$ on the set Ω. This is fully discussed in Subsection 5.2.1.
- We start this section by applying the results discussed for Method 2, particularly the Theorem 12, to all maximal subgroups and conjugacy classes of elements of $P S L_{2}(11)$ to construct 1- designs and their corresponding binary codes.
- The group $P S L_{2}(11)$ has order $660=2^{2} \times 3 \times 5 \times 11$, it has four conjugacy classes of maximal subgroups (Table 10). It has also eight conjugacy classes of elements (Table 11).

No.	Order	Index	Structure
$\operatorname{Max[1]~}$	55	12	$F_{55}=11: 5$
$\operatorname{Max[2]~}$	60	11	A_{5}
$\operatorname{Max[3]~}$	60	11	A_{5}
$\operatorname{Max[4]~}$	12	55	D_{12}

$n X$	$\|n X\|$	$C_{G}(g)$	Maximal Centralizer
$2 A$	55	D_{12}	Yes
$3 A$	110	\mathbb{Z}_{6}	No
$5 A$	132	\mathbb{Z}_{5}	No
$5 B$	132	\mathbb{Z}_{5}	No
$6 A$	110	\mathbb{Z}_{6}	No
$11 A B$	60	\mathbb{Z}_{11}	No

Max[1]

5A: $\mathcal{D}=1-(132,22,2), b=12 ;$
$C=[132,11,22]_{2}, C^{\perp}=[132,121,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=2^{66}: S_{12}$.
5B: As for 5A.

Max[1]

5A: $\mathcal{D}=1-(132,22,2), \quad b=12 ;$
$C=[132,11,22]_{2}, C^{\perp}=[132,121,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=2^{66}: S_{12}$.
5B: As for 5 A.

Max[1]

$5 A: \mathcal{D}=1-(132,22,2), b=12$;
$C=[132,11,22]_{2}, C^{\perp}=[132,121,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=2^{66}: S_{12}$.
5B: As for $5 A$.
11A: $\mathcal{D}=1-(60,5,1), b=12$;
$C=[60,12,5]_{2}, C^{\perp}=[60,48,2]_{2}$; $\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=\left(S_{5}\right)^{12}: S_{12}$.

Max[1]

$5 A: \mathcal{D}=1-(132,22,2), b=12$;
$C=[132,11,22]_{2}, C^{\perp}=[132,121,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=2^{66}: S_{12}$.
5B: As for $5 A$.
11A: $\mathcal{D}=1-(60,5,1), b=12$;
$C=[60,12,5]_{2}, C^{\perp}=[60,48,2]_{2}$; $\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=\left(S_{5}\right)^{12}: S_{12}$.
11B: As for $11 A$.

Max[2]

$2 A: \mathcal{D}=1-(55,15,3), \quad b=11 ;$

$$
C=[55,11,15]_{2}, C^{\perp}=[55,44,4]_{2} ;
$$

$$
\operatorname{Aut}(\mathcal{D})=P S L_{2}(11), \operatorname{Aut}(C)=P S L_{2}(11): 2 .
$$

5B: As for 5A
Note: Results for Max[3] are as for Max[2]

Max[2]

$2 A: \mathcal{D}=1-(55,15,3), b=11$;

$$
C=[55,11,15]_{2}, C^{\perp}=[55,44,4]_{2} ;
$$

$$
\operatorname{Aut}(\mathcal{D})=P S L_{2}(11), \operatorname{Aut}(C)=P S L_{2}(11): 2
$$

$3 A: \mathcal{D}=1-(110,20,2), b=11$;
$C=[110,10,20]_{2}, C^{\perp}=[110,100,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=2^{55}: S_{11}$.

5B: As for 5A.
Note: Results for Max[3] are as for Max[2]

Max[2]

$2 A: \mathcal{D}=1-(55,15,3), b=11$;
$C=[55,11,15]_{2}, C^{\perp}=[55,44,4]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=P S L_{2}(11), \operatorname{Aut}(C)=P S L_{2}(11): 2$.
$3 A: \mathcal{D}=1-(110,20,2), b=11$;
$C=[110,10,20]_{2}, C^{\perp}=[110,100,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=2^{55}: S_{11}$.
$5 A:: \mathcal{D}=1-(132,12,1), b=11$;
$C=[132,11,12]_{2}, C^{\perp}=[132,121,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=\left(S_{12}\right)^{11}: S_{11}$.
5B: As for 5A.
Note: Results for Max[3] are as for Max[2]

Max[2]

$2 A: \mathcal{D}=1-(55,15,3), \quad b=11 ;$
$C=[55,11,15]_{2}, C^{\perp}=[55,44,4]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=P S L_{2}(11), \operatorname{Aut}(C)=P S L_{2}(11): 2$.
3A: $\mathcal{D}=1-(110,20,2), b=11 ;$
$C=[110,10,20]_{2}, C^{\perp}=[110,100,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=2^{55}: S_{11}$.
5A: : D = 1 - $(132,12,1), b=11$;
$C=[132,11,12]_{2}, C^{\perp}=[132,121,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=\left(S_{12}\right)^{11}: S_{11}$.
5B: As for 5A.
Note: Results for Max[3] are as for Max[2]

Max[4]

$$
\begin{aligned}
2 A: & \mathcal{D}=1-(55,7,7), b=55 ; \\
& C=[55,35,4]_{2}, C^{\perp}=[55,20,10]_{2} ; \\
& \operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=P S L_{2}(11): 2 .
\end{aligned}
$$

Max[4]

2A: $\mathcal{D}=1-(55,7,7), b=55$;
$C=[55,35,4]_{2}, C^{\perp}=[55,20,10]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=P S L_{2}(11): 2$.
3A: $\mathcal{D}=1-(110,2,1), b=55 ;$
$C=[110,55,2]_{2}, C^{\perp}=[110,55,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=2^{55}: S_{55}$.

Max[4]

2A: $\mathcal{D}=1-(55,7,7), b=55$;
$C=[55,35,4]_{2}, C^{\perp}=[55,20,10]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=P S L_{2}(11): 2$.
$3 A: \mathcal{D}=1-(110,2,1), b=55 ;$
$C=[110,55,2]_{2}, C^{\perp}=[110,55,2]_{2} ;$
$\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}(C)=2^{55}: S_{55}$.
6A: As for 3A.

Let $G=P S L_{2}(q)$, let M be the stabilizer of a point in the natural action of degree $q+1$ on the set Ω. Let $M=G_{1}$.

- Then it is well known that G acts sharply 2 -transitive on Ω and

$$
M=F_{q}: F_{q}^{*}=F_{q}: \mathbb{Z}_{q-1}
$$

if q is even. For q odd we have

$$
M=F_{q}: \mathbb{Z}_{\frac{q-1}{2}}
$$

- Since G acts 2 -transitively on Ω, we have $\chi=1+\psi$ where χ is the permutation character and ψ is an irreducible character of G of degree 9 . Also since the action is sharply

Let $G=P S L_{2}(q)$, let M be the stabilizer of a point in the natural action of degree $q+1$ on the set Ω. Let $M=G_{1}$.

- Then it is well known that G acts sharply 2 -transitive on Ω and

$$
M=F_{q}: F_{q}^{*}=F_{q}: \mathbb{Z}_{q-1},
$$

if q is even. For q odd we have

$$
M=F_{q}: \mathbb{Z}_{\frac{q-1}{2}} .
$$

- Since G acts 2-transitively on Ω, we have $\chi=1+\psi$ where χ is the permutation character and ψ is an irreducible character of G of degree q. Also since the action is sharply 2 -transitive, only 1_{G} fixes 3 distinct elements. Hence for all $1_{G} \neq g \in G$ we have $\lambda=\chi(g) \in\{0,1,2\}$.

Proposition (13)

For $G=P S L_{2}(q)$, let M be the stabilizer of a point in the natural action of degree $q+1$ on the set Ω. Let $M=G_{1}$. Suppose $g \in n X \subseteq G$ is an element fixing exactly one point, and without loss of generality, assume $g \in M$. Then the replication number for the associated design is $r=\lambda=1$. We also have

Proposition (13)

For $G=P S L_{2}(q)$, let M be the stabilizer of a point in the natural action of degree $q+1$ on the set Ω. Let $M=G_{1}$. Suppose $g \in n X \subseteq G$ is an element fixing exactly one point, and without loss of generality, assume $g \in M$. Then the replication number for the associated design is $r=\lambda=1$. We also have
(i) If q is odd then $\left|g^{G}\right|=\frac{1}{2}\left(q^{2}-1\right),\left|M \cap g^{G}\right|=\frac{1}{2}(q-1)$, and \mathcal{D} is a $1-\left(\frac{1}{2}\left(q^{2}-1\right), \frac{1}{2}(q-1), 1\right)$ design with $q+1$ blocks and $\operatorname{Aut}(\mathcal{D})=S_{\frac{1}{2}(q-1)}\left\langle S_{q+1}=\left(S_{\frac{1}{2}(q-1)}\right)^{q+1}: S_{q+1}\right.$. For all $p, C=C_{p}(\mathcal{D})=\left[\frac{1}{2}\left(q^{2}-1\right), q+1, \frac{1}{2}(q-1)\right]_{p}$, with $\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})$.

Proposition (13 Cont.)

\square
Proof: Since $\chi(g)=1$, we deduce that $\psi(g)=0$. We now use the character table and conjugacy classes of $P S L_{2}(q)$ (for example see [13]):

Proposition (13 Cont.)

(ii) If q is even then $\left|g^{G}\right|=\left(q^{2}-1\right),\left|M \cap g^{G}\right|=(q-1)$, and \mathcal{D} is a $1-\left(\left(q^{2}-1\right),(q-1), 1\right)$ design with $q+1$ blocks and

$$
\left.\operatorname{Aut}(\mathcal{D})=S_{(q-1)}\right\} S_{q+1}=\left(S_{(q-1)}\right)^{q+1}: S_{q+1} .
$$

For all $\left.p, C=C_{p}(\mathcal{D})=\left[\left(q^{2}-1\right), q+1, q-1\right)\right]_{p}$, with $\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})$.

Proof: Since $\chi(g)=1$, we deduce that $\psi(g)=0$. We now use the character table and conjugacy classes of $P S L_{2}(q)$ (for example see [13]):

Proof of Proposition 13 Cont.

(i) For q odd, there are two types of conjugacy classes with $\psi(g)=0$. In both cases we have $\left|C_{G}(g)\right|=q$ and hence $|n X|=\left|g^{G}\right|=\left|P S L_{2}(q)\right| / q=\left(q^{2}-1\right) / 2$. Since $b=[G: M]=q+1$ and

$$
k=\frac{\chi(g) \times|n X|}{[G: M]}=\frac{1 \times\left(q^{2}-1\right) / 2}{q+1}=(q-1) / 2
$$

the results follow from Remark 5

Proof of Proposition 13 Cont.

(i) For q odd, there are two types of conjugacy classes with $\psi(g)=0$. In both cases we have $\left|C_{G}(g)\right|=q$ and hence $|n X|=\left|g^{G}\right|=\left|P S L_{2}(q)\right| / q=\left(q^{2}-1\right) / 2$. Since $b=[G: M]=q+1$ and

$$
k=\frac{\chi(g) \times|n X|}{[G: M]}=\frac{1 \times\left(q^{2}-1\right) / 2}{q+1}=(q-1) / 2
$$

the results follow from Remark 5
(ii) For q even, $P S L_{2}(q)=S L_{2}(q)$ and there is only one conjugacy class with $\psi(g)=0$. A class representative is the matrix $g=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ with $\left|C_{G}(g)\right|=q$ and hence $|n X|=\left|g^{G}\right|=\left|P S L_{2}(q)\right| / q=\left(q^{2}-1\right)$.

Since $b=[G: M]=q+1$ and

$$
k=\frac{\chi(g) \times|n X|}{[G: M]}=\frac{1 \times\left(q^{2}-1\right)}{q+1}=q-1
$$

the results follow from Remark 5

If we have $\lambda=r=2$ then a graph (possibly with multiple
edges) can be defined on b vertices, where b is the
number of blocks, i.e. the index of M in G, by stipulating
that the vertices labelled by the blocks b_{i} and b_{i} are
adjacent if b_{i} and b_{j} meet. Then the incidence matrix for
the design is an incidence matrix for the graph.

Since $b=[G: M]=q+1$ and

$$
k=\frac{\chi(g) \times|n X|}{[G: M]}=\frac{1 \times\left(q^{2}-1\right)}{q+1}=q-1
$$

the results follow from Remark 5

If we have $\lambda=r=2$ then a graph (possibly with multiple edges) can be defined on b vertices, where b is the number of blocks, i.e. the index of M in G, by stipulating that the vertices labelled by the blocks b_{i} and b_{j} are adjacent if b_{i} and b_{j} meet. Then the incidence matrix for the design is an incidence matrix for the graph.

We use the following result from [7, Lemma].
Lemma (14)
Let $\Gamma=(V, E)$ be a regular graph with $|V|=N,|E|=e$ and valency v. Let \mathcal{G} be the 1-(e, v,2) incidence design from an incidence matrix A for Γ. Then $\operatorname{Aut}(\Gamma)=\operatorname{Aut}(\mathcal{G})$.

Proof: See [7]. ■
Note: If Γ is connected, then we can show (induction) that $\operatorname{rank}_{p}(A) \geq|V|-1$ for all p with obvious equality when $p=2$. If in addition (as happens for some classes of graphs, see $[7,25,24]$) the minimum weight is the valency and the words of this weight are the scalar multiples of the rows of the incidence matrix, then we also have $\operatorname{Aut}\left(C_{p}(\mathcal{G})\right)=\operatorname{Aut}(\mathcal{G})$.

Proposition (15)

For $G=P S L_{2}(q)$, let M be the stabilizer of a point in the natural action of degree $q+1$ on the set Ω. Let $M=G_{1}$. Suppose $g \in n X \subseteq G$ is an element fixing exactly two points, and without loss of generality, assume $g \in M=G_{1}$ and that $g \in G_{2}$. Then the replication number for the associated design is $r=\lambda=2$.
We also have

Proposition (15)

For $G=P S L_{2}(q)$, let M be the stabilizer of a point in the natural action of degree $q+1$ on the set Ω. Let $M=G_{1}$. Suppose $g \in n X \subseteq G$ is an element fixing exactly two points, and without loss of generality, assume $g \in M=G_{1}$ and that $g \in G_{2}$. Then the replication number for the associated design is $r=\lambda=2$.
We also have
(i) If g is an involution, so that $q \equiv 1(\bmod 4)$, the design \mathcal{D} is a $1-\left(\frac{1}{2} q(q+1), q, 2\right)$ design with $q+1$ blocks and $\operatorname{Aut}(\mathcal{D})=S_{q+1}$. Furthermore $C_{2}(\mathcal{D})=\left[\frac{1}{2} q(q+1), q, q\right]_{2}$, $C_{p}(\mathcal{D})=\left[\frac{1}{2} q(q+1), q+1, q\right]_{p}$ if p is an odd prime, and $\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=S_{q+1}$ for all p.

Proposition (15, cont.)

Proof: A block of the design constructed will be $M \cap g^{G}$. Notice that from elementary considerations or using group characters we have that the only powers of g that are conjugate to g in G are g and g^{-1}. Since M is transitive on $\Omega \backslash\{1\}, g^{M}$ and $\left(g^{-1}\right)^{M}$ give $2 q$ elements in $M \cap g^{G}$ if $o(g) \neq 2$, and q if $o(g)=2$. These are all the elements in $M \cap g^{G}$ since M_{j} is cyclic.

Proposition (15, cont.)

(ii) If g is not an involution, the design \mathcal{D} is a $1-(q(q+1), 2 q, 2)$ design with $q+1$ blocks and $\operatorname{Aut}(\mathcal{D})=2^{\frac{1}{2} q(q+1)}: S_{q+1}$. Furthermore $C_{2}(\mathcal{D})=[q(q+1), q, 2 q]_{2}$, $C_{p}(\mathcal{D})=[q(q+1), q+1,2 q]_{p}$ if p is an odd prime, and $\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=2^{\frac{1}{2} q(q+1)}: S_{q+1}$ for all p.

Proof: A block of the design constructed will be $M \cap g^{G}$. Notice that from elementary considerations or using group characters we have that the only powers of g that are conjugate to g in G are g and g^{-1}. Since M is transitive on $\Omega \backslash\{1\}, g^{M}$ and $\left(g^{-1}\right)^{M}$ give $2 q$ elements in $M \cap g^{G}$ if $o(g) \neq 2$, and q if $o(g)=2$. These are all the elements in $M \cap g^{G}$ since M_{j} is cyclic.

Proof of Proposition 15 Cont.

So if $h_{1}, h_{2} \in M_{j}$ and $h_{1}=g^{x_{1}}, h_{2}=g^{x_{2}}$ for some $x_{1}, x_{2} \in G$, then h_{1} is a power of h_{2}, so they can only be equal or inverses of one another.
(i) In this case by the above $k=\left|M \cap g^{G}\right|=q$ and hence

$$
|n X|=\frac{k \times[G: M]}{\chi(g)}=\frac{q \times(q+1)}{2}
$$

So \mathcal{D} is a $1-\left(\frac{1}{2} q(q+1), q, 2\right)$ design with $q+1$ blocks. An incidence matrix of the design is an incidence matrix of a graph on $q+1$ points labelled by the rows of the matrix, with the vertices corresponding to rows r_{i} and r_{j} being adjacent if there is a conjugate of g that fixes both i and j, giving an edge $[i, j]$.

Since G is 2-transitive, the graph we obtain is the complete graph K_{q+1}. The automorphism group of the design is the same as that of the graph (see [7]), which is S_{q+1}. By [24], $C_{2}(\mathcal{D})=\left[\frac{1}{2} q(q+1), q, q\right]_{2}$ and $C_{p}(\mathcal{D})=\left[\frac{1}{2} q(q+1), q+1, q\right]_{p}$ if p is an odd prime. Further, the words of the minimum weight q are the scalar multiples of the rows of the incidence matrix, so $\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=S_{q+1}$ for all p.
If g is not an involution, then $k=\left|M \cap g^{G}\right|=2 q$ and hence

Since G is 2 -transitive, the graph we obtain is the complete graph K_{q+1}. The automorphism group of the design is the same as that of the graph (see [7]), which is S_{q+1}. By [24], $C_{2}(\mathcal{D})=\left[\frac{1}{2} q(q+1), q, q\right]_{2}$ and
$C_{p}(\mathcal{D})=\left[\frac{1}{2} q(q+1), q+1, q\right]_{p}$ if p is an odd prime.
Further, the words of the minimum weight q are the scalar multiples of the rows of the incidence matrix, so $\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=S_{q+1}$ for all p.
(ii) If g is not an involution, then $k=\left|M \cap g^{G}\right|=2 q$ and hence

$$
|n X|=\frac{k \times[G: M]}{\chi(g)}=\frac{2 q \times(q+1)}{2}=q(q+1) .
$$

So \mathcal{D} is a $1-(q(q+1), 2 q, 2)$ design with $q+1$ blocks.

In the same way we define a graph from the rows of the incidence matrix, but in this case we have the complete directed graph. The automorphism group of the graph and of the design is $2^{\frac{1}{2} q(q+1)}: S_{q+1}$. Similarly to the previous case, $C_{2}(\mathcal{D})=[q(q+1), q, 2 q]_{2}$ and $C_{p}(\mathcal{D})=[q(q+1), q+1,2 q]_{p}$ if p is an odd prime. Further, the words of the minimum weight $2 q$ are the scalar multiples of the rows of the incidence matrix, so
$\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=2^{\frac{1}{2} q(q+1)}: S_{q+1}$ for all p.

In the same way we define a graph from the rows of the incidence matrix, but in this case we have the complete directed graph. The automorphism group of the graph and of the design is $2^{\frac{1}{2} q(q+1)}: S_{q+1}$. Similarly to the previous case, $C_{2}(\mathcal{D})=[q(q+1), q, 2 q]_{2}$ and $C_{p}(\mathcal{D})=[q(q+1), q+1,2 q]_{p}$ if p is an odd prime. Further, the words of the minimum weight $2 q$ are the scalar multiples of the rows of the incidence matrix, so
$\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=2^{\frac{1}{2} q(q+1)}: S_{q+1}$ for all p.
We end this subsection by giving few examples of designs and codes constructed, using Propositions 13 and 15 , from $P S L_{2}(q)$ for $q \in\{16,17,19\}$, where M is the stabilizer of a point in the natural action of degree $q+1$ and $g \in n X \subseteq G$ is an element fixing exactly one or two points.

Example 1: PSL $_{2}(16)$

1. g is an involution having cycle type $1^{1} 2^{8}, r=\lambda=1$: \mathcal{D} is a $1-(255,15,1)$ design with 17 blocks. For all p, $C=C_{p}(\mathcal{D})=[255,17,15]_{p}$, with

$$
\left.\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})=S_{15}\right\} S_{17}=\left(S_{15}\right)^{17}: S_{17}
$$

2. g is an element of order 3 having cycle type $1^{2} 3^{5}$, $r=\lambda=2$:
\mathcal{D} is a $1-(272,32,2)$ design with 17 blocks.

p. Also for all p we have

Example 1: $\mathrm{PSL}_{2}(16)$

1. g is an involution having cycle type $1^{1} 2^{8}, r=\lambda=1$: \mathcal{D} is a $1-(255,15,1)$ design with 17 blocks. For all p,
$C=C_{p}(\mathcal{D})=[255,17,15]_{p}$, with

$$
\left.\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})=S_{15}\right\} S_{17}=\left(S_{15}\right)^{17}: S_{17}
$$

2. g is an element of order 3 having cycle type $1^{2} 3^{5}$, $r=\lambda=2$:
\mathcal{D} is a $1-(272,32,2)$ design with 17 blocks.
$C_{2}(\mathcal{D})=[272,16,32]_{2}$ and $C_{p}(\mathcal{D})=[272,17,32]_{p}$ for odd p. Also for all p we have

$$
\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=2^{136}: S_{17}
$$

Example 2: $\mathrm{PSL}_{2}(17)$. Note that $17 \equiv 1(\bmod 4)$.

1. g is an element of order 17 having cycle type $1^{1} 17^{1}$, $r=\lambda=1$:
\mathcal{D} is a $1-(144,8,1)$ design with 18 blocks. For all p,
$C=C_{p}(\mathcal{D})=[144,18,8]_{p}$, with

$$
\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})=S_{8} \text { < } S_{18}=\left(S_{8}\right)^{18}: S_{18}
$$

2. g is an involution having cycle type $1^{2} 2^{8}, r=\lambda=2$: \mathcal{D} is a $1-(153,17,2)$ design with 18 blocks. $C_{2}(\mathcal{D})=[153,17,17]_{2}$ and $C_{p}(D)=[153,18,17]_{p}$ for odd p. Also for all p we have

Example 2: $P S L_{2}(17)$. Note that $17 \equiv 1(\bmod 4)$.

1. g is an element of order 17 having cycle type $1^{1} 17^{1}$, $r=\lambda=1$:
\mathcal{D} is a $1-(144,8,1)$ design with 18 blocks. For all p,
$C=C_{p}(\mathcal{D})=[144,18,8]_{p}$, with

$$
\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})=S_{8} \text { < } S_{18}=\left(S_{8}\right)^{18}: S_{18}
$$

2. g is an involution having cycle type $1^{2} 2^{8}, r=\lambda=2$: \mathcal{D} is a $1-(153,17,2)$ design with 18 blocks.
$C_{2}(\mathcal{D})=[153,17,17]_{2}$ and $C_{p}(\mathcal{D})=[153,18,17]_{p}$ for odd p. Also for all p we have

$$
\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=S_{18}
$$

3. g is an element of order 4 having cycle type $1^{2} 4^{4}$, $r=\lambda=2$:
\mathcal{D} is a $1-(306,34,2)$ design with 18 blocks.
$C_{2}(\mathcal{D})=[306,17,34]_{2}$ and $C_{p}(\mathcal{D})=[306,18,34]_{p}$ for odd p. Also for all p we have

$$
\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=2^{153}: S_{18}
$$

g is an element of order 8 having cycle type $1^{2} 8^{2}$ D is a 1 - $(306,34,2)$ design with 18 blocks. $C_{2}(\mathcal{D})=[306,17,34]_{2}$ and $C_{p}(\mathcal{D})=[306,18,34]_{p}$ for odd p. Also for all p we have
3. g is an element of order 4 having cycle type $1^{2} 4^{4}$, $r=\lambda=2$:
\mathcal{D} is a $1-(306,34,2)$ design with 18 blocks.
$C_{2}(\mathcal{D})=[306,17,34]_{2}$ and $C_{p}(\mathcal{D})=[306,18,34]_{p}$ for odd p. Also for all p we have

$$
\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=2^{153}: S_{18}
$$

4. g is an element of order 8 having cycle type $1^{2} 8^{2}$,
$r=\lambda=2$:
\mathcal{D} is a $1-(306,34,2)$ design with 18 blocks.
$C_{2}(\mathcal{D})=[306,17,34]_{2}$ and $C_{p}(\mathcal{D})=[306,18,34]_{p}$ for odd p. Also for all p we have

$$
\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=2^{153}: S_{18}
$$

Example 3: $P S L_{2}(9)$

1. g is an element of order 19 having cycle type $1^{1} 19^{1}$, $r=\lambda=1: \mathcal{D}$ is a $1-(180,9,1)$ design with 20 blocks.
For all $p, C=C_{p}(\mathcal{D})=[180,20,9]_{p}$, with

$$
\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})=S_{9} \text { < } S_{20}=\left(S_{9}\right)^{20}: S_{20}
$$

2. g is an element of order 3 having cycle type $1^{2} 3^{6}$, $r=\lambda=2$:
\mathcal{D} is a $1-(380,38,2)$ design with 20 blocks.
$C_{2}(\mathcal{D})=[360,19,38]_{2}$ and $C_{p}(\mathcal{D})=[360,20,38]_{p}$ for odd
p. Also for all p we have

Example 3: $P_{S} L_{2}(9)$

1. g is an element of order 19 having cycle type $1^{1} 19^{1}$, $r=\lambda=1: \mathcal{D}$ is a $1-(180,9,1)$ design with 20 blocks.
For all $p, C=C_{p}(\mathcal{D})=[180,20,9]_{p}$, with

$$
\operatorname{Aut}(C)=\operatorname{Aut}(\mathcal{D})=S_{9}\left\langle S_{20}=\left(S_{9}\right)^{20}: S_{20} .\right.
$$

2. g is an element of order 3 having cycle type $1^{2} 3^{6}$, $r=\lambda=2$:
\mathcal{D} is a $1-(380,38,2)$ design with 20 blocks.
$C_{2}(\mathcal{D})=[360,19,38]_{2}$ and $C_{p}(\mathcal{D})=[360,20,38]_{p}$ for odd p. Also for all p we have

$$
\operatorname{Aut}\left(C_{p}(\mathcal{D})\right)=\operatorname{Aut}(\mathcal{D})=2^{190}: S_{20}
$$

目 F. Ali, Fischer-Clifford Theory for Split and non-Split Group Extensions, PhD Thesis, University of Natal, 2001.
F. F F. Ascmus, Ir and I. D. Kay, Designs and their Cocles, Cambridge University Press, 1992 (Cambridge Tracts in Mathematics, Vol. 103, Second printing with corrections, 1993).
B. B. Bagchi, A regular two-graph admitting the Hall-Janko-Wales group, Combinatorial mathematics and applications (Calcutta, 1988), Sankhyā, Ser. A 54 (1992), 35-45.
E. W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, November 1994.

䍰 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, An Atlas of Finite Groups, Oxford University Press, 1985.
i. A. E. Brouwer, Strongly regular graphs, in Charles J.

Colbourn and Jeffrey H. Dinitz, editors, The CRC Handbook of Combinatorial Designs, pages 667-685. CRC Press, Boca Raton, 1996. VI. 5.
W. Wish J. D. Key, and E. Mwambene, Codes from the incidence matrices and line graphs of Hamming graphs, submitted.
L. Finkelstein, The maximal subgroups of Janko's sinple group of order 50, 232, 960, J. Algebra, 30 (1974), 122-143.
L. Finkelestein and A. Rudvalis, Maximal subgroups of the Hall-Janko-Wales group, J. Algebra, 24 (1977),486-493.
F. M S. Ganief, 2-Generations of the Snoradic Simple Groups, PhD Thesis, University of Natal, 1997.
F. I. M. Isaacs, Character Theory of Finite Groups, Academic Press, San Diego, 1976.

- The GAP Group, GAP - Groups, Algorithms and Programming, Version 4.2, Aachen, St Andrews, 2000, (http://www-gap.dcs.st-and.ac.uk/~gap).
K. E. Gehles, Ordinary characters of finite special linear groups, MSc Dissertaion, University of St Andrews, 2002.

7. Holt, DF (with Fick B and O'Brien FA), Handhook of Computational Group Theory, Chapman \& Hall/CRC, 2005.

Tiv. W. C. Huffman, Codes and groups, in V. S. Pless and W. C. Huffman, editors, Handbook of Coding Theory, pages 1345-1440, Amsterdam: Elsevier, 1998, Volume 2, Part 2, Chapter 17.

F- C. Jancen K I UX, R. Parker, and R. Wilson. An Atlas of Brauer Characters.
Oxford: Oxford Scientific Publications, Clarendon Press, 1995.

LMS Monographs New Series 11.

E. W. Knapp and P. Schmid, Codes with prescribed permutation group, J. Algebra, 67 (1980), 415-435, 1980.

目 J. D. Key and J. Moori, Designs, codes and graphs from the Janko groups J_{1} and J_{2}, J. Combin. Math. and Combin. Comput., 40 (2002), 143-159.
E. J. D. Key and J. Moori, Correction to: "Codes, designs and graphs from the Janko groups J_{1} and J_{2} [J. Combin. Math. Combin. Comput., 40 (2002), 143-159], J. Combin. Math. Combin. Comput., 64 (2008), 153.
F. J. D. Key and J. Moori, Some irreducible codes invariant under the Janko group, J_{1} or J_{2}, submitted.

目 J. D. Key and J. Moori, Designs and codes from maximal

 subgroups and conjugacy classes of finite simple groups, submitted.R J. D. Key, J. Moori, and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple group, J. Combin. Math. and Combin. Comput., 45 (2003), 3-19.

E J. D. Key, J. Moori, and B. G. Rodrigues, Some binary codes from symplectic geometry of odd characteristic, Utilitas Mathematica, 67 (2005), 121-128.
E. J. D. Key, J. Moori, and B. G. Rodrigues, Codes associated with triangular graphs, and permutation decoding, Int. J. Inform. and Coding Theory, to appear.
F. J. D. Key and B. G. Rodrigues, Codes associated with lattice graphs, and permutation decoding, submitted.

WI Knann and P Schmid Codes with nrescribed permutation group, J. Algebra, 67(1980), 415-435, 1980.

E- J. Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under the $M^{C} L: 2$ group, J. Comb. Theory, Series A, 110 (2005), 53-69.
E. J. Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group CO_{2}, J. of Algerbra, 316 (2007), 649-661.

E J. Moori and B. G. Rodrigues, A self-orthogonal doubly-even code invariant under $\mathrm{M}^{\mathrm{c}} \mathrm{L}$, Ars Combinatoria, 91 (2009), 321-332.
(1) J. Moori and B. G. Rodrigues, Some designs and codes invariant under the Higman-Sims group, Utilitas Mathematica, to appear.

- J. Moori and B. Rodrigues, Ternary codes invariant under the simple group CO_{2}, under prepararion.

Fo I. Mïller and J. Rosenboom, Jens, Condensation of induced representations and an application: the 2-modular decomposition numbers of Co_{2}, Computational methods for
representations of groups and algebras (Essen, 1997), 309-321, Progr. Math., 173, Birkhuser, Basel, 1999.
I. I I Rotman An Introduction to the Theory of Grouns volume 148 of Graduate Text in Mathematics, Springer-Verlag, 1994.

Fent 11 Renrecentations in characteristic p. In Bruce Cooperstein and Geoffrey Mason, editors, Finite Groups, volume 37 of Proc. Sympos. Pure Math., 319-331, Providence, RI, 1980.

B I. A. Suleiman and R. A. Wilson, The 2-modular characters of Conway's group CO_{2}, Math. Proc. Cambridge Philos. Soc. 116 (1994), 275-283.

Abstract
Introduction
Method 2
Some 1-designs and Codes from A_{7}
Designs and codes from $P L_{2}(q)$
$G=P S L_{2}(q)$ of degree $q+1, M=G_{1}$
References

R. A. Wilson, Vector stabilizers and subgroups of Leech lattice groups, J. Algebra, 127 (1989), 387-408. n. A. wilson, The maximal subgroups of Conway's group Co_{2}, J. Algebra, 84 (1983), 107-114.

