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abstract

Abstract

Many types of polynomials arise naturally in the representation theory of
Lie groups and Lie algebras. We will show how families of (nonclassical)
orthogonal polynomials such as ultra spherical, Pollaczek, associated
Legendre, associated Jacobi, and Cheybshev polynomials appear. Such
polynomials arise when describing the universal central extension of
particular families of Krichever-Novikov algebras and their automorphism
groups. The associated Jacobi polynomials of Ismail and Wimp satisfy
certain fourth order linear differential equations that also are related to the
work of Kaneko and Zagier on supersingular j-invariants and Atkins
polynomials. We will describe this family of differential equations. This is
joint work with V. Futorny, J. Tirao, and R. Lu, X. Guo and K. Zhao.
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The Universal Central Extension.

The Universal Central Extension.

An extension of a Lie algebra L is a short exact sequence of Lie algebras

0 −−−−−→ I
f−−−−−→ L′

g−−−−−→ L −−−−−→ 0.

A homomorphism from one extension g : L′ → L to another extension g ′ : L′′ → L is a
Lie algebra homomorphism h : L′ → L′′ such that g ′ ◦ h = g .

A central extension of a Lie algebra L is an extension such that ker g ⊂ Z(L′) where
Z(L′) is the center of the Lie algebra L′.

A central extension u : L̂→ L is called a universal central extension if there exists a
unique homomorphism from u : L̂→ L to any other central extension g : L′ → L.

Experience has shown that universal central extensions have a “richer’ representation
theory than just the algebra L itself.

There is a somewhat abstract construction for the universal central extension exists if
the Lie algebra L is perfect meaning [L, L] = L. Note the three dimensional Heisenberg
Lie algebra is a non-perfect a central extension but it doesn’t satisfy the uniqueness
property for the map u above.
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Universal Central Extension of g⊗ R

Universal Central Extension of g⊗ R

• R be a commutative algebra defined over C and g is a finite dimensional simple Lie
algebra defined over C.

• Ω1
R = F/K is the module of Kähler differentials: it is the left R-module with

action f (g ⊗ h) = fg ⊗ h for f , g , h ∈ R and K is the submodule generated by
1⊗ fg − f ⊗ g − g ⊗ f .

• The element f ⊗ g + K is traditionally denoted by fdg . The canonical map
d : R → Ω1

R is given by df = 1⊗ f + K . The exact differentials are the elements
of the subspace dR. The coset of fdg modulo dR is denoted by fdg .

• ĝ = (g⊗ R)⊕ Ω1
R/dR is the Lie algebra with bracket given by

[x ⊗ f , y ⊗ g ] = [xy ]⊗ fg + (x , y)fdg , [x ⊗ f , ω] = 0, [ω, ω′] = 0,

where x , y ∈ g, and ω, ω′ ∈ Ω1
R/dR and (x , y) denotes the Killing form on g.

C. Kassel (1984) showed the universal central extension of g⊗ R is the Lie algebra ĝ.
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Universal Central Extension of g⊗ R

Lie algebra 2-cocycles

A Lie algebra 2-cocycle for a Lie algebra L defined over the complex
numbers is a bilinear map ψ : L× L→ C satisfying the two conditions

1 ψ(a, b) = −ψ(b, a), for all a, b ∈ L,

2 ψ([a, b], c) + ψ([b, c], a) + ψ([c , a], b) = 0, for all a, b, c ∈ L.

The assignment ψ : (g⊗ R)× (g⊗ R)→ C given by

ψ(x ⊗ f , y ⊗ g) := (x , y)f dg (3.1)

is a 2-cocycle on the Lie algebra g⊗ R. Here one finds a basis for ΩR/dR
and with respect to that basis the coefficients of the basis satisfy the
conditions for being a 2-cocycle.

Main Problem: Given a basis of R find a basis of ΩR/dR and then
describe explicitly the 2-cocycle in terms of these basis. Many families of
known polynomials naturally appear.
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Examples for basis of ΩR/dR

Examples for basis of ΩR/dR

1 If R = C[t±1
1 , . . . , t±1

n ], then the universal central extension of g⊗ R
for n ≥ 1 is called a toroidal Lie algebra. In this case ΩR/dR has a
countable but infinite basis

tm1
1 tm2

2 · · · t
−1
i · · · t

mn
n dti

mj ∈ Z and 1 ≤ i ≤ n (S. Eswara Rao and R. Moody 1994).

2 Let a1, . . . , an be distinct complex numbers. If
R = C[t±1, (t − a1)−1 . . . , (t − an)−1], then ΩR/dR has a basis

t−1
i dt, (t − a1)−1 dt, . . . , (t − an)−1 dt.

This is a result due to M. Bremner (1994). Here g⊗ R is an example
of an n + 2-point algebra.
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Multipoint Krichever-Novikov algebras

Multipoint Krichever-Novikov algebras

Let Σ be a compact Riemann surface of genus g and A a finite number of n ≥ 2 points
in Σ. R will be the ring of meromorphic functions on on Σ with poles only allowed at A.
There are at least two families of Krichever-Novikov algebras arising from the study of
integrable systems: central extensions of

• the current algebra type g⊗ R,

• the algebra of derivations Der(R).

All of the algebras we will talk about today are examples (of central extensions) of
Krichever-Novikov algebras.

Three useful results

1

dimC ΩR/dR = 2g + n − 1

(by a result of Grothendieck).

2 Der(R) are infinite dimensional simple Lie algebras (and thus perfect) due to D.
A. Jordan (1986).

3 Dimension of the center of the universal central extension of Der(R) is also
2g + n − 1 due to S. Skryabin (2004).
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More Examples: 4-point.

Examples: 4-point algebras

Let a ∈ C with a 6= 0, 1. If

R = C[t±1, (t − 1)−1, (t − a)−1],

then R ∼= S where S = C[t, t−1, u | u2 = t2 − 2bt + 1] for some complex number
b 6= ±1. In this case we have ΩS/dS has a basis

ω0 := t−1 dt, ω+ := t−1u dt, ω− := t−2u dt.

Proposition (Bremner, 1995)

For i ∈ Z, j ∈ Z, one has

t i−
1
2 ud(t j) =


jQi+j− 3

2
(b)(bω+ + ω−) for i + j ≥ 3/2,

jω± for i + j = ±1/2,

jQ−i−j− 3
2
(b)(ω+ + bω−) for i + j ≤ −3/2,

(6.1)

where

Qk(b) := −Pk+2(b)

b2 − 1
and Pk(b) are the ultra spherical polynomials with generating function
(z2 − 2bz + 1)−1/2.
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More Examples: Elliptic algebras

Examples: Elliptic algebras

Let
R = C[t, t−1, u | u2 = t3 − 2bt2 + t]

for some complex number b 6= ±1. This is the coordinate ring of the an elliptic curve
with a finite number of points removed. In this case we have ΩR/dR has a basis

ω0 := t−1 dt, ω+ := t−1u dt, ω− := t−2u dt.

The four parameter Pollaczek polynomials Pk(b) = Pλk (b;α, β, γ) satisfy the recursion
relation

(k + γ)Pk(b) = 2[(k + λ+α+ γ − 1)b + β)]Pk−1(b)− (k + 2λ+ γ − 2)Pk−2(b). (7.1)

Proposition (Bremner, 1995)

For i , j ∈ Z, one has

t i−1ud(t j) = j(p|i+j|(b)ω− + q|i+j|(b)ω−) (7.2)

where pk and qk are the the Pollaczek polynomials P
−1/2
k (b; 0,−1, 1/2) with initial

conditions p0(b) = 1, p1(b) = 0, respectively q0(b) = 0, q1(b) = 1.
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DJKM algebras

DJKM algebras

Date, Jimbo, Kashiwara and Miwa studied in 1986 integrable systems arising from
Landau-Lifshitz differential equation:

St = S× Sxx + S× JS (8.1)

where

S = (S1, S2, S3), S2
1 + S2

2 + S2
3 = 1, J =

J1 0 0
0 J2 0
0 0 J3


Ji are constants. The authors introduced an infinite-dimensional Lie algebra which is a
one dimensional central extension of

g⊗ C[t, t−1, u|u2 = (t2 − b2)(t2 − c2)] (8.2)

where b 6= ±c are complex constants and g is a simple finite dimensional Lie algebra.
This Lie algebra acts on the solutions of the Landau-Lifshitz equation as infinitesimal
Bäcklund transformations. These are the DJKM algebras and they are a particular type
of KN-algebra.
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The recursion relation

Consider the ring

R = C[t, t−1, u|u2 = p(t) = tn + an−1tn−1 + · · ·+ a0].

Theorem (M. Bremner)

Let R be as above. The set

{t−1 dt, t−1u dt, . . . , t−nu dt}

forms a basis of Ω1
R/dR (omitting t−nu dt if a0 = 0).

Lemma (C.-Futorny)

If um = p(t) and R = C[t, t−1, u|um = p(t)], then in Ω1
R/dR, one has

((m + 1)n + im)tn+i−1u dt ≡ −
n−1∑
j=0

((m + 1)j + mi)aj t
i+j−1u dt mod dR (9.1)
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The recursion relation

In the Date-Jimbo-Miwa-Kashiwara setting we have p(t) = (t2 − a2)(t2 − b2) whereby
after a change of variables we may assume p(t) = t4 − 2ct2 + 1 so that the recursion
relation looks like

(6 + 2k)tku dt = −2(k − 3)tk−4u dt + 4kctk−2u dt, (9.2)

Let Pk := Pk(c) be the polynomial in c satisfy the recursion relation

(6 + 2k)Pk(c) = 4kcPk−2(c)− 2(k − 3)Pk−4(c)

for k ≥ 0.

Problem: What are the Pk? Are they classical orthogonal polynomials of some sort?

Cox,Futorny,Tirao (College of Charleston) Families of polynomials appearing in the study of infinite dimensional Lie algebras.May 20, 2015 12 / 28



The Generating Function

We follow ideas found in Arken’s book on ”Mathematical Methods for Physicists”. Form
the generating function

P(c, z) :=
∑
k≥−4

Pk(c)zk+4 =
∑
k≥0

Pk−4(c)zk .

Then the recursion relation implies that P(c, z) must satisfy the differential equation

d

dz
P(c, z)− 3z4 − 4cz2 + 1

z5 − 2cz3 + z
P(c, z) =

2 (P−1 + cP−3) z3 + P−2z2 + (4cz2 − 1)P−4

z5 − 2cz3 + z
(10.1)

where P−1,P−2,P−3,P−4 are arbitrary constants. This has integrating factor

µ(z) = exp

∫ ( −2
(
z3 − cz

)
1− 2cz2 + z4

− 1

z

)
dz

= exp(−1

2
ln(1− 2cz2 + z4)− ln(z)) =

1

z
√

1− 2cz2 + z4
.
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The Generating Function

If we take initial conditions P−3(c) = P−2(c) = P−1(c) = 0 and P−4(c) = 1 then we
arrive at a generating function

P−4(c, z) :=
∑
k≥−4

P−4,k(c)zk+4 =
∑
k≥0

P−4,k−4(c)zk ,

defined in terms of an elliptic integral

P−4(c, z) = z
√

1− 2cz2 + z4

∫
4cz2 − 1

z2(z4 − 2cz2 + 1)3/2
dz .

If we take initial conditions P−4(c) = P−3(c) = P−1(c) = 0 and P−2(c) = 1, we arrive
at a generating function defined in terms of another elliptic integral:

P−2(c, z) = z
√

1− 2cz2 + z4

∫
1

(z4 − 2cz2 + 1)3/2
dz .
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The Generating Function Gegenbauer Cases

If we take P−1(c) = 1, and P−2(c) = P−3(c) = P−4(c) = 0 and set

P−1(c, z) =
∑
n≥0

P−1,n−4zn, then

P−1(c, z) =
1

c2 − 1

(
cz − z3 − cz + c2z3 −

∞∑
k=2

cQ(−1/2)
n (c)z2n+1

)
,

where Q
(−1/2)
n (c) is the n-th Gegenbauer polynomial. The Q

(−1/2)
n (c) are known to

satisfy the second order differential equation:

(1− c2)
d2

d2c
Q(−1/2)

n (c) + n(n − 1)Q(−1/2)
n (c) = 0

so that the P−1,k := P−1,k(c) satisfy the second order differential equation

(c4 − c2)
d2

d2c
P−1,2n−3 + 2c(c2 + 1)

d

dc
P−1,2n−3 + (−c2n(n − 1)− 2)P−1,2n−3 = 0

(10.2)
for n ≥ 2.
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The Generating Function Gegenbauer Cases

Next we consider the initial conditions P−1(c) = 0 = P−2(c) = P−4(c) = 0 with
P−3(c) = 1 and set

P−3(c, z) =
∑
n≥0

P−3,n−4(c)zn =
1

c2 − 1

(
c2z − cz3 − z + cz3 −

∞∑
k=2

Q(−1/2)
n (c)z2n+1

)
,

where Q
(−1/2)
n (c) is the n-th Gegenbauer or ultraspherical polynomial. Hence

(c2 − 1)
d2

d2c
P−3,2n−3 + 4c

d

dc
P−3,2n−3 − (n + 1)(n − 2)P−3,2n−3 = 0 (10.3)

for n ≥ 2 and P−1,2n−3 = cP−3,2n−3 for n ≥ 2.
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The Generating Function Gegenbauer Cases

The fourth order linear differential equations

If we take initial conditions P−4(c) = P−3(c) = P−1(c) = 0 and P−2(c) = 1, recall that
we arrive at a generating function defined in terms of another elliptic integral: From now
on we are going to reindex the polynomials P−4,n:

P−4(c, z) = z
√

1− 2cz2 + z4

∫
4cz2 − 1

z2(z4 − 2cz2 + 1)3/2
dz =

∞∑
n=0

P−4,n(c)zn

= 1 + z4 +
4c

5
z6 +

1

35

(
32c2 − 5

)
z8 +

16

105
c
(

8c2 − 3
)

z10

−
(
2048c4 − 1248c2 + 75

)
1155

z12 + O(z14)
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The Generating Function Gegenbauer Cases

This means that now P−4,0(c) = 1, P−4,1(c) = P−4,2(c) = P−4.3(c) = 0. The first few
nonzero polynomials in c are

P−4,4(c) = 1, P−4,6 =
4c

5
, P−2,8 =

32c2 − 5

35

P−2,10 =
16

105
c
(

8c2 − 3
)
, P−2,12 = −

(
2048c4 − 1248c2 + 75

)
1155

and the coefficients P−4,n(c) of the generating function satisfy

16(c2 − 1)2P(iv)
n + 160c(c2 − 1)P ′′′n − 8(c2(n2 − 4n − 46)− n2 + 4n + 22)P ′′n

− 24c(n2 − 4n − 6)P ′n + (n − 4)2n2Pn = 0.
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The Generating Function Elliptic Case 2

We reindex the polynomials P−2,n:

P−2(c, z) = z
√

1− 2cz2 + z4

∫
1

(z4 − 2cz2 + 1)3/2
=
∞∑
n=0

P−2,n(c)zn.

This means that now P−2,2(c) = 1, P−2,3(c) = P−2,1(c) = P−2,0(c) = 0 and the first
few nonzero polynomials in c are

P−2,2(c) = 1, P−2,6 = 1/5, P−2,8 = 8c/35,

P−2,10,= (−7 + 32c2)/105, P−2,12 = 8c(−29 + 64c2)/1155.

so that

P−2(c, z) = z2 +
1

5
z6 +

8c

35
z8 +

32c2 − 7

105
z10 +

8c(64c2 − 29)

1155
z12 + O(z14).
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The Generating Function Elliptic Case 2

After a very similar lengthy analysis we arrive at the following result: The polynomials
Pn = P−2,n(c) are solutions to the family of ODE’s

16(c2 − 1)2P(iv)
n + 160c(c2 − 1)P ′′′n − 8(c2(n2 − 4n − 42)− n2 + 4n + 18)P ′′n

− 24c(n2 − 4n − 2)P ′n + (n − 6)(n − 2)2(n + 2)Pn = 0.
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The Generating Function Elliptic Case 2

Theorem (Favard)

Let pn be a family of polynomials of degree n satisfying the following
recursion

xpn = an+1pn+1 + bnpn + cn−1pn−1,

for some complex numbers ai , bj , ck . Then {pn, n ≥ 0} is an orthonormal
family of polynomials with respect to some moment functional if
cn−1 = ān for all n.

This means that with respect to some moment functional L one has
L[pm(x)pn(x)] = 0 for m 6= n.

The polynomials Pn above do not satisfy the hypothesis of this theorem,
but scalar multiples of them do. Hence the Pn are orthogonal polynomials.
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The Generating Function Elliptic Case 2

A family of orthogonal polynomials qn of degree n is said to be classical if they are
eigenfunctions of the differential operator

D = (ax2 + bx + c)

(
d

dx

)2

+ (ex + f )
d

dx
, (10.4)

with eigenvalues that are polynomials of degree 2 in n. In other words they satisfy
equations of the following type

(ax2 + bx + c)

(
d

dx

)2

qn + (ex + f )
d

dx
qn = (an(n − 1) + bn + c + en + f )qn, (10.5)

for some constants a, b, c, d , e, f and for all n ≥ 0.
The families of polynomials P−4,n and P−2,n for n ≥ 0 do not satisfy such differential
equations for all n so they are non-classical. The P−4,n are specializations of the
associated Jacobi polynomials studied by J. Bustoz, M. Ismail (1982) and J. Wimp
(1987). The orthogonal polynomials P−2,n and its corresponding fourth order linear
differential equation appear to be new.
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The Generating Function Universal Central Extension

Set ω0 := t−1 dt, ω−1 := t−1u dt, ω−2 := t−2u dt, ω−3, := t−3u dt, ω−4 := t−4u dt

Theorem (C.-Futorny)

Let g be a simple finite dimensional Lie algebra over the complex numbers with the
Killing form ( | ) and define ψij(c) ∈ Ω1

R/dR by

ψij(c) =


ωi+j−2 for i + j = 1, 0,−1,−2

P−3,i+j−2(c)(ω−3 + cω−1) for i + j = 2n − 1 ≥ 3, n ∈ Z,
P−3,i+j−2(c)(cω−3 + ω−1) for i + j = −2n + 1 ≤ −3, n ∈ Z,
P−4,|i+j|−2(c)ω−4 + P−2,|i+j|−2(c)ω−2 for |i + j | = 2n ≥ 2, n ∈ Z.

(10.6)
The universal central extension of the Date-Jimbo-Kashiwara-Miwa algebra is the
Z2-graded Lie algebra

ĝ = (g⊗ R)⊕ Cω−4 ⊕ Cω−3 ⊕ Cω−2 ⊕ Cω−1 ⊕ Cω0

with bracket

[x ⊗ t i , y ⊗ t j ] = [x , y ]⊗ t i+j + δi+j,0j(x , y)ω0,

[x ⊗ t i−1u, y ⊗ t j−1u] = [x , y ]⊗ (t i+j+2 − 2ct i+j + t i+j−2)

+ (δi+j,−2(j + 1)− 2cjδi+j,0 + (j − 1)δi+j,2) (x , y)ω0,

[x ⊗ t i−1u, y ⊗ t j ] = [x , y ]u ⊗ t i+j−1 + j(x , y)ψij(c).
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The Generating Function Universal Central Extension of hyperelliptic current algebras.

Recent work: Universal Central Extension of hyperelliptic
current algebras

Let

p(t) = (t − α1) · · · (t − αn) =
n∑

i=0

ai t
i

where the αi are distinct complex numbers and fix

R = C[t, t−1, u | u2 = p(t)]

so that R is a regular ring. The g⊗ R is a hyperelliptic Lie algebra. We let
Pk,i := Pk,i (a0, . . . , an−1), k ≥ −n, −n ≤ i ≤ −1 be the polynomials in the ai satisfying
the recursion relations

(2k + n + 2)Pk,i = −
n−1∑
j=0

(3j + 2k − 2n + 2)ajPk−n+j,i (10.7)

Then using Faá de Bruno’s formula we get

Pn(a0, . . . , an−1) =
1

n!

n∑
l=0

(−1)l(2l + 1)!!

2l
Bn,l(an−1, 2an−2, . . . , (n− l + 1)!al−1). (10.8)

where Bn,l are Bell polynomials (C, 2015). (Bell’s grave is in Watsonville, California).
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Universal Central Extension of Der(R)

Recent work: Universal Central Extension of Der(R).

There is an abstract description of the universal central extension of Der(R) for R a
regular ring due to S. Skryabin - (regular means it has a finite global dimension or its
local rings at all prime ideals are all regular local rings - the minimal number of
generators of its maximal ideal is equal to its Krull dimension.)

In any case when R = C[t, t−1, u | u2 = p(t)] we have a description of the 2-cocyles in
terms of the polynomials Pn(a0, . . . , an−1) above. It also involves the formula of Faá de
Bruno and Bell polynomials. When

p(t) = t2n − 2antn + 1

for n ≥ 2 fixed an 6= ±1, one obtains that the Pn are associated Legendre polynomials.
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Automorphism group of Der(R).

Automorphism group of Der(R):
R = C[t, (t − a1)−1, . . . , (t − an)−1].

The automorphism group of Der(R) for R when R is a regular ring is completely
determined by the automorphism group of R (by another result of S. Skryabin). This is
a very hard problem in general for R the ring of meromorphic functions on a Riemann
surface with a finite number of fixed poles.

One approach to determining the automorphism group of R is to first determine the
group of units of R and then realize that units have to be mapped to units. We used
this approach to prove the following result.

Theorem (C., Xiangqian Guo, Rencai Lu, Kaiming Zhao)

Let R = C[t, (t − a1)−1, . . . , (t − an)−1]. The automorphism group of Der(R), where ai

are distinct is isomorphic to one of the following groups studied by Klein: S4, A4, A5,
Cn, Dn and all these groups appear as automorphism groups.
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Automorphism group of Der(R).

Automorphism group of Der(R):
R = C[t, t−1, u | u2 = p(t)]

An element an + bnu in the group of units of R = C[t, t−1, u | u2 = p(t)] must satisfy ’
the polynomial Pell equation

a2
n − p(t)b2

n = tk

for some k ∈ Z. Remark: If p(t) = t2 − 1 and k = 0, then it is known that
an(t) = Tn(t) and bn(t) = Un(t) are the Chebyshev polynomials.

Using the description of the group of units of R we get

Theorem (C., Xiangqian Guo, Rencai Lu, Kaiming Zhao)

The automorphism group of R = C[t, t−1, u | u2 = t(t − a1) · · · (t − a2n)], is of type
Zk × Z2 or Dk × Z2, k ≥ 2.
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Some differential equations.

Automorphism group of Der(R):

Last remark: If p(t) = t4 − 2βt2 + 1, β 6= 1, then one can form the generating function
for an and bn and use it to show that the bn satisfy the second order Fuchsian
differential equation of the form

P(t)y ′′ + Qn(t)y ′ + Rn(t)y = 0

where

P(t) = t
(

t2 + 1
)(

t4 − 2βt2 + 1
)
,

Qn(t) = −
(

(2n − 3)t6 + t4(−4βn + 2n − 5) + t2(4β − 4βn + 2n + 3) + 2n + 1
)

= −2(n − 1)
(

t2 + 1
)(

t4 − 2βt2 + 1
)

+ t6 + (4β + 3)t4 − 5t2 − 3,

Rn(t) = −2n
(

2t5 + t3(β + (β + 1)n + 5) + t(−β + (β + 1)n + 1)
)
.

We found a fourth order linear differential equation that the an satisfy but the
differential equation is too messy to put into a paper.
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