Abstract

Mighty oaks from little acorns grow

Sphere-packing, the Leech lattice and the Conway group

Rob Curtis

CIMPA Conference July 2015

Indispensable references

1. H.S.M. Coxeter, Introduction to Geometry
Wiley 1961.
2. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups
Springer-Verlag 1988.

The Kissing Number

The pink circle is touched by 6 non-overlapping blue circles: The Kissing Number in \mathbb{R}^{2} is 6 .

A Lattice Packing

The centres of the circles lie on the lattice
$\Lambda=\left\{m e_{1}+n e_{2} \mid m, n \in \mathbb{Z}\right\}$. The plane is covered by triangles congruent to the one indicated.

The density of a lattice packing

The density of the hexagonal lattice in \mathbb{R}^{2} is

$$
\frac{\pi / 2}{\frac{1}{2} .2 \sqrt{3}}=\frac{\pi}{2 \sqrt{3}} \sim .9069
$$

The Kissing Number in \mathbb{R}^{3}

Visibly we can have 12 unit spheres touching a given unit sphere without overlapping one another. So the Kissing number in \mathbb{R}^{3} is at least 12.

Isaac Newton 1643-1727 and David Gregory 1659-1708

Kissing number in \mathbb{R}^{3}.

The vertices of 3 golden rectangles mutually perpendicular to one another lie at the 12 vertices of a regular icosahedron. cf. Coxeter's Geometry page 162 following Fra Luca Pacioli 1445-1509 De divina proportione.

Golden Rectangle

At each vertex of the icosahedron place a sphere with centre that vertex and radius r one half the distance of the vertex from O, the centre of the icosahedron. These spheres all touch a sphere of radius r centre O but do not touch one another.

Highest density of a lattice packing in \mathbb{R}^{3}

- Remarkably the highest density packing is unknown (unproven!).

Highest density of a lattice packing in \mathbb{R}^{3}

- Remarkably the highest density packing is unknown (unproven!).
- Densest lattice packing is achieved by the face-centred cubic lattice A_{3} or $D_{3}: \mathbb{Z}[(-1,-1,0),(1,-1,0),(0,1,-1)]$, all integral vectors with even sum [Gauss 1831].

Highest density of a lattice packing in \mathbb{R}^{3}

- Remarkably the highest density packing is unknown (unproven!).
- Densest lattice packing is achieved by the face-centred cubic lattice A_{3} or $D_{3}: \mathbb{Z}[(-1,-1,0),(1,-1,0),(0,1,-1)]$, all integral vectors with even sum [Gauss 1831].
- This has density $\pi / \sqrt{18} \sim .74048$. Rogers: "many mathematicians believe, and all physicists know" that this is best possible. [C-S]

Calculation of the density Δ

- A generator matrix M and Gramm matrix $A=M M^{t}$ for D_{3} are given by

$$
M=\left(\begin{array}{rrr}
-1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \text { and } A=\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) .
$$

Calculation of the density Δ

- A generator matrix M and Gramm matrix $A=M M^{t}$ for D_{3} are given by

$$
M=\left(\begin{array}{rrr}
-1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \text { and } A=\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) .
$$

- $\Delta=$ proportion of space occupied by spheres $=$

Calculation of the density Δ

- A generator matrix M and Gramm matrix $A=M M^{t}$ for D_{3} are given by

$$
M=\left(\begin{array}{rrr}
-1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \text { and } A=\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) .
$$

- $\Delta=$ proportion of space occupied by spheres $=$
- $\frac{\text { volume of one sphere }}{\text { volume of fundamental region }}=\frac{\text { volume of one sphere }}{(\operatorname{det} A)^{\frac{1}{2}}}=$

Calculation of the density Δ

- A generator matrix M and Gramm matrix $A=M M^{t}$ for D_{3} are given by

$$
M=\left(\begin{array}{rrr}
-1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \text { and } A=\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) .
$$

- $\Delta=$ proportion of space occupied by spheres $=$
- $\frac{\text { volume of one sphere }}{\text { volume of fundamental region }}=\frac{\text { volume of one sphere }}{(\operatorname{det} A)^{\frac{1}{2}}}=$
- $\frac{4}{3} \pi\left(\frac{1}{\sqrt{2}}\right)^{3} \times \frac{1}{2}=\frac{\pi}{\sqrt{18}}$

Calculation of the density Δ

- A generator matrix M and Gramm matrix $A=M M^{t}$ for D_{3} are given by

$$
M=\left(\begin{array}{rrr}
-1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \text { and } A=\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) .
$$

- $\Delta=$ proportion of space occupied by spheres $=$
- $\frac{\text { volume of one sphere }}{\text { volume of fundamental region }}=\frac{\text { volume of one sphere }}{(\operatorname{det} A)^{\frac{1}{2}}}=$
- $\frac{4}{3} \pi\left(\frac{1}{\sqrt{2}}\right)^{3} \times \frac{1}{2}=\frac{\pi}{\sqrt{18}}$
- $\mathrm{V}_{n}(R)=\frac{2 \pi R^{2}}{n} \mathrm{~V}_{n-2}(R)=\frac{\pi^{n / 2}}{(n / 2)!} R^{n}$.

Higher dimensions: sphere-packing in \mathbb{R}^{n}

- The distance between 2 points \mathbf{x} and \mathbf{y} in \mathbb{R}^{n} is defined to be

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}} .
$$

Higher dimensions: sphere-packing in \mathbb{R}^{n}

- The distance between 2 points \mathbf{x} and \mathbf{y} in \mathbb{R}^{n} is defined to be

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}} .
$$

- So a sphere of radius 1 and centre \mathbf{a} is given by

$$
B(\mathbf{a}, 1)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid d(\mathbf{x}, \mathbf{a})<1\right\} .
$$

Higher dimensions: sphere-packing in \mathbb{R}^{n}

- The distance between 2 points \mathbf{x} and \mathbf{y} in \mathbb{R}^{n} is defined to be

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}} .
$$

- So a sphere of radius 1 and centre \mathbf{a} is given by

$$
B(\mathbf{a}, 1)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid d(\mathbf{x}, \mathbf{a})<1\right\} .
$$

- How many unit spheres can touch a given unit sphere without overlapping one another? The Kissing number τ_{n}.

Higher dimensions: sphere-packing in \mathbb{R}^{n}

- The distance between 2 points \mathbf{x} and \mathbf{y} in \mathbb{R}^{n} is defined to be

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}} .
$$

- So a sphere of radius 1 and centre \mathbf{a} is given by

$$
B(\mathbf{a}, 1)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid d(\mathbf{x}, \mathbf{a})<1\right\} .
$$

- How many unit spheres can touch a given unit sphere without overlapping one another? The Kissing number τ_{n}.
- What proportion of n-dimensional space can be covered by unit spheres? The density Δ.

Higher dimensions: sphere-packing in \mathbb{R}^{n}

- The distance between 2 points \mathbf{x} and \mathbf{y} in \mathbb{R}^{n} is defined to be

$$
d(\mathbf{x}, \mathbf{y})=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}} .
$$

- So a sphere of radius 1 and centre \mathbf{a} is given by

$$
B(\mathbf{a}, 1)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid d(\mathbf{x}, \mathbf{a})<1\right\} .
$$

- How many unit spheres can touch a given unit sphere without overlapping one another? The Kissing number τ_{n}.
- What proportion of n-dimensional space can be covered by unit spheres? The density Δ.
- The general question is too hard, so usually restrict to lattice packings.

Kissing number in \mathbb{R}^{4}

- The kissing number for lattice packings in \mathbb{R}^{4} is at least 24 :

Kissing number in \mathbb{R}^{4}

- The kissing number for lattice packings in \mathbb{R}^{4} is at least 24:
- Consider $\Lambda=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{i} \in \mathbb{Z}, \sum x_{i} \in 2 \mathbb{Z}\right\}$

Kissing number in \mathbb{R}^{4}

- The kissing number for lattice packings in \mathbb{R}^{4} is at least 24:
- Consider $\Lambda=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{i} \in \mathbb{Z}, \sum x_{i} \in 2 \mathbb{Z}\right\}$
- There are $24=\binom{4}{2} \times 2^{2}$ points in Λ at distance $\sqrt{2}$ from O of form $(\pm 1, \pm 1,0,0)$, and any two of these points are at least $\sqrt{2}$ apart.

Kissing number in \mathbb{R}^{4}

- The kissing number for lattice packings in \mathbb{R}^{4} is at least 24:
- Consider $\Lambda=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{i} \in \mathbb{Z}, \sum x_{i} \in 2 \mathbb{Z}\right\}$
- There are $24=\binom{4}{2} \times 2^{2}$ points in Λ at distance $\sqrt{2}$ from O of form $(\pm 1, \pm 1,0,0)$, and any two of these points are at least $\sqrt{2}$ apart.
- So 24 spheres of radius $\sqrt{2} / 2$ with centres at these points will all touch a central sphere of the same radius and will not overlap.

Kissing number in \mathbb{R}^{4}

- The kissing number for lattice packings in \mathbb{R}^{4} is at least 24:
- Consider $\Lambda=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{i} \in \mathbb{Z}, \sum x_{i} \in 2 \mathbb{Z}\right\}$
- There are $24=\binom{4}{2} \times 2^{2}$ points in Λ at distance $\sqrt{2}$ from O of form $(\pm 1, \pm 1,0,0)$, and any two of these points are at least $\sqrt{2}$ apart.
- So 24 spheres of radius $\sqrt{2} / 2$ with centres at these points will all touch a central sphere of the same radius and will not overlap.
- Oleg Musin (2003) proved that this is best possible, so $\tau_{4}=24$. The problem is equivalent to asking how many points can be placed on S_{n-1} so that the angular separation between any two of them is at least $\pi / 3$.

Coxeter-Dynkin diagrams

Crystallographic finite reflection groups. A reflection in the hyperplane orthogonal to a root r, given by

$$
\theta_{r}: x \mapsto x-2 \frac{x . r}{r \cdot r} r
$$

preserves the lattice Λ.

The 2-dimensional chrystallographic lattices

A_{2}

B_{2}

Best known kissing numbers and packings C\&S 1988

Table 1.1. Records for packings, kissing numbers, coverings and quantizers. (Box: optimal. To left of double line: known to be optimal among lattices.) For $n \leqslant 8$ the entry in the first row is $\cong \Lambda_{n}$.

DIMENSION	1	2	3	4	8	6	7	8	12	16	24
DENSEST PACKING	2	A_{2}	A_{3}	D_{4}	D_{6}	E_{6}	E_{7}	E_{8}	K_{12}	A_{16}	A_{24}
HIGHEST KISSING NUMBER	2	6	$\|12\|$					$\left\lvert\, \begin{gathered} E_{8} \\ 240 \end{gathered}\right.$	$\begin{aligned} & K_{12} \\ & 756 \end{aligned}$	$\begin{aligned} & \Lambda_{18} \\ & 4320 \end{aligned}$	$\begin{gathered} \Delta_{24} \\ 196560 \end{gathered}$
THINNEST COVERING	2	A_{B}		A_{4}^{*}	A_{B}^{*}	A_{B}	A_{7}	A_{B}^{*}	A_{12}^{*}	A_{16}^{*}	Δ_{24}
BEST QUANTIZER	2		A_{3}^{*}	O_{4}	DÊ)	E_{6}^{*}	E_{7}^{*}	E8	K_{12}	${ }^{16}$	Δ_{24}

Integral lattices

- In CS a lattice Λ is integral if the inner product of any two of its vectors is an integer.

Integral lattices

- In CS a lattice Λ is integral if the inner product of any two of its vectors is an integer.
- A generator matrix is a matrix M whose rows form a basis for Λ.

Integral lattices

- In CS a lattice Λ is integral if the inner product of any two of its vectors is an integer.
- A generator matrix is a matrix M whose rows form a basis for Λ.
- A square matrix $A=M M^{t}$ is a Gramm matrix of Λ, and

$$
\operatorname{det} \Lambda=\operatorname{det} A,
$$

it is the square of the volume of a fundamental region.

Integral lattices

- In CS a lattice Λ is integral if the inner product of any two of its vectors is an integer.
- A generator matrix is a matrix M whose rows form a basis for Λ.
- A square matrix $A=M M^{t}$ is a Gramm matrix of Λ, and

$$
\operatorname{det} \Lambda=\operatorname{det} A,
$$

it is the square of the volume of a fundamental region.

- Λ^{\star}, the dual of Λ consists of all vectors whose inner product with every vector of Λ is an integer. An integral lattice is unimodular or self-dual if $|\Lambda|=1$ or equivalently if $\Lambda=\Lambda^{\star}$.

Integral lattices

- In CS a lattice Λ is integral if the inner product of any two of its vectors is an integer.
- A generator matrix is a matrix M whose rows form a basis for Λ.
- A square matrix $A=M M^{t}$ is a Gramm matrix of Λ, and

$$
\operatorname{det} \Lambda=\operatorname{det} A,
$$

it is the square of the volume of a fundamental region.

- Λ^{\star}, the dual of Λ consists of all vectors whose inner product with every vector of Λ is an integer. An integral lattice is unimodular or self-dual if $|\Lambda|=1$ or equivalently if $\Lambda=\Lambda^{\star}$.
- An integral lattice Λ such that $x . x \in 2 \mathbb{Z}$ for all $x \in \Lambda$ is said to be even. Even unimodular lattices exist if, and only if, dimension $n=8 k$. One for $n=8$; two for $n=16$; twenty-four for $n=24$, the Niemeier lattices

The E_{8} lattice

$$
\left(-1,1,0^{6}\right)\left(0,-1,1,0^{5}\right)\left(0^{2},-1,1,0^{4}\right) \underbrace{\left(0^{5}, 1,-1,0\right)\left(0^{6}, 1,-1\right)}_{\left(0^{3},-1,1,0^{3}\right)\left(0^{4},-1,-1,0^{2}\right)} \underbrace{\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)}_{0}
$$

The shortest vectors in Λ and the Weyl group of E_{8}

$$
\Lambda=\left\{\left(x_{1}, x_{2}, \ldots, x_{8}\right) \mid \sum x_{i} \in 2 \mathbb{Z} \text { and }\left\{\begin{array}{l}
\text { either } x_{i} \in \mathbb{Z} \text { for all } i \\
\text { or } x_{i} \in \mathbb{Z}+\frac{1}{2} \text { for all } i
\end{array}\right\}\right.
$$

The shortest vectors in Λ and the Weyl group of E_{8}

$$
\Lambda=\left\{\left(x_{1}, x_{2}, \ldots, x_{8}\right) \mid \sum x_{i} \in 2 \mathbb{Z} \text { and }\left\{\begin{array}{l}
\text { either } x_{i} \in \mathbb{Z} \text { for all } i \\
\text { or } x_{i} \in \mathbb{Z}+\frac{1}{2} \text { for all } i
\end{array}\right\}\right.
$$

- Norm 2 vectors:

The shortest vectors in Λ and the Weyl group of E_{8}

$$
\Lambda=\left\{\left(x_{1}, x_{2}, \ldots, x_{8}\right) \mid \sum x_{i} \in 2 \mathbb{Z} \text { and }\left\{\begin{array}{l}
\text { either } x_{i} \in \mathbb{Z} \text { for all } i \\
\text { or } x_{i} \in \mathbb{Z}+\frac{1}{2} \text { for all } i
\end{array}\right\}\right.
$$

- Norm 2 vectors:
(i) $\binom{8}{2} \times 2^{2}=112$ vectors of shape $\left(\pm 1, \pm 1,0^{6}\right)$.

The shortest vectors in Λ and the Weyl group of E_{8}

$$
\Lambda=\left\{\left(x_{1}, x_{2}, \ldots, x_{8}\right) \mid \sum x_{i} \in 2 \mathbb{Z} \text { and }\left\{\begin{array}{l}
\text { either } x_{i} \in \mathbb{Z} \text { for all } i \\
\text { or } x_{i} \in \mathbb{Z}+\frac{1}{2} \text { for all } i
\end{array}\right\}\right.
$$

- Norm 2 vectors:
(i) $\binom{8}{2} \times 2^{2}=112$ vectors of shape $\left(\pm 1, \pm 1,0^{6}\right)$.
(ii) $2^{7}=128$ vectors of shape $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \ldots \pm \frac{1}{2}\right)$.

The shortest vectors in Λ and the Weyl group of E_{8}

$$
\Lambda=\left\{\left(x_{1}, x_{2}, \ldots, x_{8}\right) \mid \sum x_{i} \in 2 \mathbb{Z} \text { and }\left\{\begin{array}{l}
\text { either } x_{i} \in \mathbb{Z} \text { for all } i \\
\text { or } x_{i} \in \mathbb{Z}+\frac{1}{2} \text { for all } i
\end{array}\right\}\right.
$$

- Norm 2 vectors:
(i) $\binom{8}{2} \times 2^{2}=112$ vectors of shape $\left(\pm 1, \pm 1,0^{6}\right)$.
(ii) $2^{7}=128$ vectors of shape $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \ldots \pm \frac{1}{2}\right)$.

$$
\text { Total } 112+128=240 .
$$

The shortest vectors in Λ and the Weyl group of E_{8}

$$
\Lambda=\left\{\left(x_{1}, x_{2}, \ldots, x_{8}\right) \mid \sum x_{i} \in 2 \mathbb{Z} \text { and }\left\{\begin{array}{l}
\text { either } x_{i} \in \mathbb{Z} \text { for all } i \\
\text { or } x_{i} \in \mathbb{Z}+\frac{1}{2} \text { for all } i
\end{array}\right\}\right.
$$

- Norm 2 vectors:
(i) $\binom{8}{2} \times 2^{2}=112$ vectors of shape $\left(\pm 1, \pm 1,0^{6}\right)$.
(ii) $2^{7}=128$ vectors of shape $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \ldots \pm \frac{1}{2}\right)$.

$$
\text { Total } 112+128=240 .
$$

- Preserved by the Weyl group $\mathrm{O}_{8}^{+}(2) \cong \mathrm{D}_{4}(2)$ of order $4 \times 174,182,400$; a permutation group on 120 letters.

The shortest vectors in Λ and the Weyl group of E_{8}

$$
\Lambda=\left\{\left(x_{1}, x_{2}, \ldots, x_{8}\right) \mid \sum x_{i} \in 2 \mathbb{Z} \text { and }\left\{\begin{array}{l}
\text { either } x_{i} \in \mathbb{Z} \text { for all } i \\
\text { or } x_{i} \in \mathbb{Z}+\frac{1}{2} \text { for all } i
\end{array}\right\}\right.
$$

- Norm 2 vectors:
(i) $\binom{8}{2} \times 2^{2}=112$ vectors of shape $\left(\pm 1, \pm 1,0^{6}\right)$.
(ii) $2^{7}=128$ vectors of shape $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \ldots \pm \frac{1}{2}\right)$.

$$
\text { Total } 112+128=240 .
$$

- Preserved by the Weyl group $\mathrm{O}_{8}^{+}(2) \cong \mathrm{D}_{4}(2)$ of order $4 \times 174,182,400$; a permutation group on 120 letters.
- 240 spheres of radius $\frac{1}{\sqrt{2}}$ centred at these lattice points all touch a sphere centre O of the same radius and do not overlap. $\tau_{8}=240$. [Odlyzko and Sloane 1979, Chapter 13 in CS]

The Mathieu group M_{24} and the binary Golay code

- The binary Golay code \mathcal{C} is a length 24 , dimension 12 code over \mathbb{Z}_{2} consisting of

The Mathieu group M_{24} and the binary Golay code

- The binary Golay code \mathcal{C} is a length 24 , dimension 12 code over \mathbb{Z}_{2} consisting of
(i) A codeword of weight 0 , the zero vector

The Mathieu group M_{24} and the binary Golay code

- The binary Golay code \mathcal{C} is a length 24 , dimension 12 code over \mathbb{Z}_{2} consisting of
(i) A codeword of weight 0 , the zero vector
(ii) 759 codewords of weight 8 , the octads

The Mathieu group M_{24} and the binary Golay code

- The binary Golay code \mathcal{C} is a length 24 , dimension 12 code over \mathbb{Z}_{2} consisting of
(i) A codeword of weight 0 , the zero vector
(ii) 759 codewords of weight 8 , the octads
(iii) 2576 codewords of weight 12, the dodecads

The Mathieu group M_{24} and the binary Golay code

- The binary Golay code \mathcal{C} is a length 24 , dimension 12 code over \mathbb{Z}_{2} consisting of
(i) A codeword of weight 0 , the zero vector
(ii) 759 codewords of weight 8 , the octads
(iii) 2576 codewords of weight 12, the dodecads
(iv) 759 codewords of weight 16 , the 16 -ads complements of octads

The Mathieu group M_{24} and the binary Golay code

- The binary Golay code \mathcal{C} is a length 24 , dimension 12 code over \mathbb{Z}_{2} consisting of
(i) A codeword of weight 0 , the zero vector
(ii) 759 codewords of weight 8 , the octads
(iii) 2576 codewords of weight 12, the dodecads
(iv) 759 codewords of weight 16 , the 16 -ads complements of octads
(v) a codeword of weight 24 , the all ones vector.

The Mathieu group M_{24} and the binary Golay code

- The binary Golay code \mathcal{C} is a length 24 , dimension 12 code over \mathbb{Z}_{2} consisting of
(i) A codeword of weight 0 , the zero vector
(ii) 759 codewords of weight 8 , the octads
(iii) 2576 codewords of weight 12, the dodecads
(iv) 759 codewords of weight 16 , the 16 -ads complements of octads
(v) a codeword of weight 24 , the all ones vector.

$$
1+759+2576+759+1=2^{12}
$$

The Mathieu group M_{24} and the binary Golay code

- The binary Golay code \mathcal{C} is a length 24 , dimension 12 code over \mathbb{Z}_{2} consisting of
(i) A codeword of weight 0 , the zero vector
(ii) 759 codewords of weight 8 , the octads
(iii) 2576 codewords of weight 12, the dodecads
(iv) 759 codewords of weight 16 , the 16 -ads complements of octads
(v) a codeword of weight 24, the all ones vector.

$$
1+759+2576+759+1=2^{12}
$$

- The supports of these codewords are known as \mathcal{C}-sets.

The Mathieu group M_{24} and the binary Golay code

- The binary Golay code \mathcal{C} is a length 24 , dimension 12 code over \mathbb{Z}_{2} consisting of
(i) A codeword of weight 0 , the zero vector
(ii) 759 codewords of weight 8 , the octads
(iii) 2576 codewords of weight 12, the dodecads
(iv) 759 codewords of weight 16 , the 16 -ads complements of octads
(v) a codeword of weight 24 , the all ones vector.

$$
1+759+2576+759+1=2^{12} .
$$

- The supports of these codewords are known as \mathcal{C}-sets.
- The group of permutations of the 24 coordinates preserving \mathcal{C} is the quintuply transitive Mathieu group M_{24} of order 244, 823, 040. Every subset of 5 points lies in precisely one octad.

John Leech 1926-92, Skipper of the Waverley

The Leech lattice 1965

- Using M_{24} and \mathcal{C}, Leech was able to construct a wonderfully symmetrical even, unimodular 24-dimensional lattice Λ.

The Leech lattice 1965

- Using M_{24} and \mathcal{C}, Leech was able to construct a wonderfully symmetrical even, unimodular 24-dimensional lattice Λ.
- Λ may be taken as all integral vectors $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$ such that

The Leech lattice 1965

- Using M_{24} and \mathcal{C}, Leech was able to construct a wonderfully symmetrical even, unimodular 24-dimensional lattice Λ.
- Λ may be taken as all integral vectors $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$ such that
(i) All x_{i} are even, or all x_{i} are odd;

The Leech lattice 1965

- Using M_{24} and \mathcal{C}, Leech was able to construct a wonderfully symmetrical even, unimodular 24-dimensional lattice Λ.
- Λ may be taken as all integral vectors $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$ such that
(i) All x_{i} are even, or all x_{i} are odd;
(ii) The positions on which $x_{i} \equiv m$ modulo 4 is a \mathcal{C}-set, for $m=0,1,2,3 ;$

The Leech lattice 1965

- Using M_{24} and \mathcal{C}, Leech was able to construct a wonderfully symmetrical even, unimodular 24-dimensional lattice Λ.
- Λ may be taken as all integral vectors $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$ such that
(i) All x_{i} are even, or all x_{i} are odd;
(ii) The positions on which $x_{i} \equiv m$ modulo 4 is a \mathcal{C}-set, for $m=0,1,2,3$;
(iii) $\sum x_{i} \equiv 0 \bmod 8$ if the x_{i} are even, and $\sum x_{i} \equiv 4 \bmod 8$ if the x_{i} are odd.

The Leech lattice 1965

- Using M_{24} and \mathcal{C}, Leech was able to construct a wonderfully symmetrical even, unimodular 24-dimensional lattice Λ.
- Λ may be taken as all integral vectors $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$ such that
(i) All x_{i} are even, or all x_{i} are odd;
(ii) The positions on which $x_{i} \equiv m$ modulo 4 is a \mathcal{C}-set, for $m=0,1,2,3$;
(iii) $\sum x_{i} \equiv 0 \bmod 8$ if the x_{i} are even, and $\sum x_{i} \equiv 4 \bmod 8$ if the x_{i} are odd.
With this scaling every lattice vector has norm $\sum x_{i}^{2}=16 n$; such a vector is said to be of type Λ_{n}.

The shortest vectors Λ_{2}.

- Λ_{2} consists of

The shortest vectors Λ_{2}.

- Λ_{2} consists of
(i) $\binom{24}{2} \times 2^{2}=1104$ of shape $\left(\pm 4, \pm 4,0^{22}\right)$;

The shortest vectors Λ_{2}.

- Λ_{2} consists of
(i) $\binom{24}{2} \times 2^{2}=1104$ of shape $\left(\pm 4, \pm 4,0^{22}\right)$;
(ii) $759 \times 2^{7}=97152$ of shape $\left((\pm 2)^{8}, 0^{16}\right)$;

The shortest vectors Λ_{2}.

- Λ_{2} consists of
(i) $\binom{24}{2} \times 2^{2}=1104$ of shape $\left(\pm 4, \pm 4,0^{22}\right)$;
(ii) $759 \times 2^{7}=97152$ of shape $\left((\pm 2)^{8}, 0^{16}\right)$;
(iii) $24 \times 2^{12}=98304$ of shape $\left(\pm 3,(\pm 1)^{23}\right)$.

The shortest vectors Λ_{2}.

- Λ_{2} consists of
(i) $\binom{24}{2} \times 2^{2}=1104$ of shape $\left(\pm 4, \pm 4,0^{22}\right)$;
(ii) $759 \times 2^{7}=97152$ of shape $\left((\pm 2)^{8}, 0^{16}\right)$;
(iii) $24 \times 2^{12}=98304$ of shape $\left(\pm 3,(\pm 1)^{23}\right)$.
- Total:

$$
1104+97152+98304=196560
$$

The shortest vectors Λ_{2}.

- Λ_{2} consists of
(i) $\binom{24}{2} \times 2^{2}=1104$ of shape $\left(\pm 4, \pm 4,0^{22}\right)$;
(ii) $759 \times 2^{7}=97152$ of shape $\left((\pm 2)^{8}, 0^{16}\right)$;
(iii) $24 \times 2^{12}=98304$ of shape $\left(\pm 3,(\pm 1)^{23}\right)$.
- Total:

$$
1104+97152+98304=196560
$$

- So we can place 196560 non-overlapping spheres with radius $\frac{1}{2} \cdot \sqrt{16.2}=2 \sqrt{2}$ and centres at these lattice points and they will all touch a sphere of the same radius centred on the origin. It turns out that this is best possible and the kissing number $\tau_{24}=196560$. [Odlyzko and Sloane 1979, Chapter 13 in CS.]

John McKay 1939 - : " a snapper up of unconsidered trifles "

John Horton Conway 1937 - for whom Mathematics is a Game, and Games are Mathematics.

New groups from old

$$
H \rightarrow \wedge \rightarrow G
$$

New groups from old

$$
\begin{aligned}
H & \rightarrow \wedge \rightarrow G \\
\mathrm{M}_{22} & \rightarrow \Gamma_{100} \rightarrow \mathrm{HS}
\end{aligned}
$$

New groups from old

$$
\begin{aligned}
H & \rightarrow \wedge \rightarrow G \\
\mathrm{M}_{22} & \rightarrow \Gamma_{100} \rightarrow \mathrm{HS} \\
\mathrm{M}_{22} & \rightarrow \mathcal{P}_{176+176} \rightarrow \mathrm{HS}
\end{aligned}
$$

New groups from old

$$
\begin{aligned}
H & \rightarrow \Lambda \rightarrow G \\
\mathrm{M}_{22} & \rightarrow \Gamma_{100} \rightarrow \mathrm{HS} \\
\mathrm{M}_{22} & \rightarrow \mathcal{P}_{176+176} \rightarrow \mathrm{HS} \\
\mathrm{M}_{24} & \rightarrow \Lambda \rightarrow \cdot \mathrm{O}
\end{aligned}
$$

New groups from old

$$
\begin{aligned}
H & \rightarrow \Lambda \rightarrow G \\
\mathrm{M}_{22} & \rightarrow \Gamma_{100} \rightarrow \mathrm{HS} \\
\mathrm{M}_{22} & \rightarrow \mathcal{P}_{176+176} \rightarrow \mathrm{HS} \\
\mathrm{M}_{24} & \rightarrow \Lambda \rightarrow \cdot \mathrm{O}
\end{aligned}
$$

- Wish to go straight from H to G, obtaining Λ as a by-product.

Symmetric presentation of .O

- Suppose that there is a group G generated by a set of $\binom{24}{4}$ involutions, corresponding to tetrads of the 24 points on which M_{24} acts, and which are permuted within G by inner automorphisms corresponding to M_{24}. So have a homomorphism

$$
2^{\star\binom{24}{4}}: \mathrm{M}_{24} \mapsto G .
$$

Symmetric presentation of .O

- Suppose that there is a group G generated by a set of $\binom{24}{4}$ involutions, corresponding to tetrads of the 24 points on which M_{24} acts, and which are permuted within G by inner automorphisms corresponding to M_{24}. So have a homomorphism

$$
2^{\star\binom{24}{4}}: \mathrm{M}_{24} \mapsto G .
$$

- Lemma implies
$\left\langle t_{T}, t_{U}\right\rangle \cap \mathrm{M}_{24} \leq C_{\mathrm{M}_{24}}\left(\operatorname{Stabilizer}\left(\mathrm{M}_{24},[T, U]\right)\right)$.

Symmetric presentation of .O

- Suppose that there is a group G generated by a set of $\binom{24}{4}$ involutions, corresponding to tetrads of the 24 points on which M_{24} acts, and which are permuted within G by inner automorphisms corresponding to M_{24}. So have a homomorphism

$$
2^{\star\binom{24}{4}}: \mathrm{M}_{24} \mapsto G .
$$

- Lemma implies
$\left\langle t_{T}, t_{U}\right\rangle \cap \mathrm{M}_{24} \leq C_{\mathrm{M}_{24}}\left(\operatorname{Stabilizer}\left(\mathrm{M}_{24},[T, U]\right)\right)$.

t_{T}

t_{U}

Rob Curtis, Birmingham

The additional relation

- This stabilizer has shape $2^{4}: 2^{3}$.

The additional relation

- This stabilizer has shape $2^{4}: 2^{3}$.
- Its centre has order 2 and is generated by

The additional relation

- This stabilizer has shape $2^{4}: 2^{3}$.
- Its centre has order 2 and is generated by

- Shortest word which could represent ν (without collapse) is

$$
\nu=t_{A B} t_{A C} t_{A D}
$$

The additional relation

- This stabilizer has shape $2^{4}: 2^{3}$.
- Its centre has order 2 and is generated by

- Shortest word which could represent ν (without collapse) is

$$
\nu=t_{A B} t_{A C} t_{A D}
$$

- So factor out this relation to obtain

$$
G=\frac{2^{\star\left({ }_{4}^{24}\right)}: \mathrm{M}_{24}}{\nu=t_{A B} t_{A C} t_{A D}} \cong \cdot \mathrm{O}, \text { The Conway group. }
$$

Recovering the Leech lattice

- Note that the lowest dimension in which G could have a representation is 24 .

Recovering the Leech lattice

- Note that the lowest dimension in which G could have a representation is 24 .
- Show that $\left\langle t_{U} t_{V} \mid U+V \in \mathcal{C}_{8}\right\rangle \cong 2^{12}$, an elementary abelian group isomorphic to \mathcal{C}.

Recovering the Leech lattice

- Note that the lowest dimension in which G could have a representation is 24 .
- Show that $\left\langle t_{U} t_{V} \mid U+V \in \mathcal{C}_{8}\right\rangle \cong 2^{12}$, an elementary abelian group isomorphic to \mathcal{C}.
- Construct the element t_{T} as a 24×24 matrix and observe that it has to be precisely

$$
t_{T}=-\xi_{T},
$$

the negative of the Conway element in the original construction of $\cdot \mathrm{O}$.

Recovering the Leech lattice

- Note that the lowest dimension in which G could have a representation is 24 .
- Show that $\left\langle t_{U} t_{V} \mid U+V \in \mathcal{C}_{8}\right\rangle \cong 2^{12}$, an elementary abelian group isomorphic to \mathcal{C}.
- Construct the element t_{T} as a 24×24 matrix and observe that it has to be precisely

$$
t_{T}=-\xi_{T},
$$

the negative of the Conway element in the original construction of $\cdot \mathrm{O}$.

- Obtain the Leech lattice Λ by simply applying the group so constructed to the standard basis vectors.

Recovering the Leech lattice

- Note that the lowest dimension in which G could have a representation is 24 .
- Show that $\left\langle t_{U} t_{V} \mid U+V \in \mathcal{C}_{8}\right\rangle \cong 2^{12}$, an elementary abelian group isomorphic to \mathcal{C}.
- Construct the element t_{T} as a 24×24 matrix and observe that it has to be precisely

$$
t_{T}=-\xi_{T},
$$

the negative of the Conway element in the original construction of $\cdot \mathrm{O}$.

- Obtain the Leech lattice Λ by simply applying the group so constructed to the standard basis vectors.
- Conway: the group • O is simply M_{24} writ large

