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The Kissing Number

The pink circle is touched by 6 non-overlapping blue circles: The
Kissing Number in R2 is 6.
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A Lattice Packing

The centres of the circles lie on the lattice
Λ = {me1 + ne2 | m, n ∈ Z}. The plane is covered by triangles
congruent to the one indicated.
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The density of a lattice packing

The density of the hexagonal lattice in R2 is

π/2
1
2 .2
√

3
=

π

2
√

3
∼ .9069
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The Kissing Number in R3

Visibly we can have 12 unit spheres touching a given unit sphere
without overlapping one another. So the Kissing number in R3 is
at least 12.
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Isaac Newton 1643-1727 and David Gregory 1659-1708
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Kissing number in R3.

The vertices of 3 golden rectangles mutually perpendicular to one
another lie at the 12 vertices of a regular icosahedron. cf.
Coxeter’s Geometry page 162 following Fra Luca Pacioli 1445-1509
De divina proportione.
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Golden Rectangle

At each vertex of the icosahedron place a sphere with centre that
vertex and radius r one half the distance of the vertex from O, the
centre of the icosahedron. These spheres all touch a sphere of
radius r centre O but do not touch one another.
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Highest density of a lattice packing in R3

I Remarkably the highest density packing is unknown
(unproven!).

I Densest lattice packing is achieved by the face-centred cubic
lattice A3 or D3: Z[(−1,−1, 0), (1,−1, 0), (0, 1,−1)], all
integral vectors with even sum [Gauss 1831].

I This has density π/
√

18 ∼ ·74048. Rogers: ”many
mathematicians believe, and all physicists know” that this is
best possible. [C-S]
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Calculation of the density ∆

I A generator matrix M and Gramm matrix A = MMt for D3

are given by

M =

 −1 −1 0
1 −1 0
0 1 −1

 and A =

 2 0 −1
0 2 −1
−1 −1 2

 .

I ∆ = proportion of space occupied by spheres =

I
volume of one sphere

volume of fundamental region
=

volume of one sphere

(detA)
1
2

=

I 4
3π( 1√

2
)3 × 1

2 = π√
18

I Vn(R) =
2πR2

n
Vn−2(R) =

πn/2

(n/2)!
Rn.
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Higher dimensions: sphere-packing in Rn

I The distance between 2 points x and y in Rn is defined to be

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2.

I So a sphere of radius 1 and centre a is given by

B(a, 1) = {x ∈ Rn | d(x, a) < 1}.

I How many unit spheres can touch a given unit sphere without
overlapping one another? The Kissing number τn.

I What proportion of n-dimensional space can be covered by
unit spheres? The density ∆.

I The general question is too hard, so usually restrict to lattice
packings.
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Kissing number in R4

I The kissing number for lattice packings in R4 is at least 24:

I Consider Λ = {(x1, x2, x3, x4) | xi ∈ Z,
∑

xi ∈ 2Z }
I There are 24 =

(4
2

)
× 22 points in Λ at distance

√
2 from O of

form (±1,±1, 0, 0), and any two of these points are at least√
2 apart.

I So 24 spheres of radius
√

2/2 with centres at these points will
all touch a central sphere of the same radius and will not
overlap.

I Oleg Musin (2003) proved that this is best possible, so
τ4 = 24. The problem is equivalent to asking how many
points can be placed on Sn−1 so that the angular separation
between any two of them is at least π/3.
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Coxeter-Dynkin diagrams

Crystallographic finite reflection groups. A reflection in the
hyperplane orthogonal to a root r , given by

θr : x 7→ x − 2
x .r

r .r
r ,

preserves the lattice Λ.
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The 2-dimensional chrystallographic lattices
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Best known kissing numbers and packings C&S 1988
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Integral lattices

I In CS a lattice Λ is integral if the inner product of any two of
its vectors is an integer.

I A generator matrix is a matrix M whose rows form a basis for
Λ.

I A square matrix A = MMt is a Gramm matrix of Λ, and

detΛ = detA,

it is the square of the volume of a fundamental region.

I Λ?, the dual of Λ consists of all vectors whose inner product
with every vector of Λ is an integer. An integral lattice is
unimodular or self-dual if |Λ| = 1 or equivalently if Λ = Λ?.

I An integral lattice Λ such that x .x ∈ 2Z for all x ∈ Λ is said
to be even. Even unimodular lattices exist if, and only if,
dimension n = 8k . One for n = 8; two for n = 16; twenty-four
for n = 24, the Niemeier lattices
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The E8 lattice
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The shortest vectors in Λ and the Weyl group of E8

I

Λ =

{
(x1, x2, . . . , x8) |

∑
xi ∈ 2Z and

{
either xi ∈ Z for all i
or xi ∈ Z + 1

2 for all i

}

I Norm 2 vectors:

(i)
(
8
2

)
× 22 = 112 vectors of shape (±1,±1, 06).

(ii) 27 = 128 vectors of shape (± 1
2 ,±

1
2 , . . .±

1
2 ).

Total 112 + 128 = 240.

I Preserved by the Weyl group O+
8 (2) ∼= D4(2) of order

4× 174, 182, 400; a permutation group on 120 letters.

I 240 spheres of radius 1√
2

centred at these lattice points all

touch a sphere centre O of the same radius and do not
overlap. τ8 = 240. [Odlyzko and Sloane 1979, Chapter 13 in
CS]
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The Mathieu group M24 and the binary Golay code

I The binary Golay code C is a length 24, dimension 12 code
over Z2 consisting of

(i) A codeword of weight 0, the zero vector
(ii) 759 codewords of weight 8, the octads
(iii) 2576 codewords of weight 12, the dodecads
(iv) 759 codewords of weight 16, the 16-ads complements of octads
(v) a codeword of weight 24, the all ones vector.

1 + 759 + 2576 + 759 + 1 = 212.

I The supports of these codewords are known as C-sets.

I The group of permutations of the 24 coordinates preserving C
is the quintuply transitive Mathieu group M24 of order 244,
823, 040. Every subset of 5 points lies in precisely one octad.
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John Leech 1926-92, Skipper of the Waverley
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The Leech lattice 1965

I Using M24 and C, Leech was able to construct a wonderfully
symmetrical even, unimodular 24-dimensional lattice Λ.

I Λ may be taken as all integral vectors (x1, x2, . . . , x24) such
that

(i) All xi are even, or all xi are odd;
(ii) The positions on which xi ≡ m modulo 4 is a C-set, for

m = 0, 1, 2, 3;
(iii)

∑
xi ≡ 0 mod 8 if the xi are even, and

∑
xi ≡ 4 mod 8 if the

xi are odd.

With this scaling every lattice vector has norm
∑

x2i = 16n;
such a vector is said to be of type Λn.
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The shortest vectors Λ2.

I Λ2 consists of

(i)
(
24
2

)
× 22 = 1104 of shape (±4,±4, 022);

(ii) 759× 27 = 97152 of shape ((±2)8, 016);
(iii) 24× 212 = 98304 of shape (±3, (±1)23).

I Total:
1104 + 97152 + 98304 = 196560

I So we can place 196560 non-overlapping spheres with radius
1
2 .
√

16.2 = 2
√

2 and centres at these lattice points and they
will all touch a sphere of the same radius centred on the origin.
It turns out that this is best possible and the kissing number
τ24 = 196560. [Odlyzko and Sloane 1979, Chapter 13 in CS.]
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John McKay 1939 - : ” a snapper up of unconsidered
trifles ”

Rob Curtis, Birmingham Sphere-packing, the Leech lattice and the Conway group



John Horton Conway 1937 - for whom Mathematics is a
Game, and Games are Mathematics.
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New groups from old

I

H → Λ → G

I

M22 → Γ100 → HS

I

M22 → P176+176 → HS

I

M24 → Λ → ·O

I Wish to go straight from H to G , obtaining Λ as a by-product.
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Symmetric presentation of ·O

I Suppose that there is a group G generated by a set of
(24
4

)
involutions, corresponding to tetrads of the 24 points on
which M24 acts, and which are permuted within G by inner
automorphisms corresponding to M24. So have a
homomorphism

2?(
24
4 ) : M24 7→ G .

I Lemma implies
〈tT , tU〉 ∩M24 ≤ CM24(Stabilizer(M24, [T ,U])).

I
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The additional relation

I This stabilizer has shape 24 : 23.

I Its centre has order 2 and is generated by

I Shortest word which could represent ν (without collapse) is

ν = tABtAC tAD .

I So factor out this relation to obtain

G =
2?(

24
4 ) : M24

ν = tABtAC tAD
∼= ·O, The Conway group.
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Recovering the Leech lattice

I Note that the lowest dimension in which G could have a
representation is 24.

I Show that 〈tUtV | U + V ∈ C8〉 ∼= 212, an elementary abelian
group isomorphic to C.

I Construct the element tT as a 24× 24 matrix and observe
that it has to be precisely

tT = −ξT ,

the negative of the Conway element in the original
construction of ·O.

I Obtain the Leech lattice Λ by simply applying the group so
constructed to the standard basis vectors.

I Conway: the group ·O is simply M24 writ large
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