The Thompson chain of perfect groups

Rob Curtis

CIMPA Conference July 2015

Notation

- We denote a free product of n copies of the cyclic group C_{m} by $m^{\star n}$.

Notation

- We denote a free product of n copies of the cyclic group C_{m} by $m^{\star n}$.
- Thus

$$
E=2^{\star 3} \cong \mathrm{C}_{2} \star \mathrm{C}_{2} \star \mathrm{C}_{2} \cong\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1\right\rangle
$$

Notation

- We denote a free product of n copies of the cyclic group C_{m} by $m^{\star n}$.
- Thus

$$
E=2^{\star 3} \cong \mathrm{C}_{2} \star \mathrm{C}_{2} \star \mathrm{C}_{2} \cong\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1\right\rangle
$$

- So any group generated by three involutions is a homomorphic image of E.

Notation

- We denote a free product of n copies of the cyclic group C_{m} by $m^{\star n}$.
- Thus

$$
E=2^{\star 3} \cong \mathrm{C}_{2} \star \mathrm{C}_{2} \star \mathrm{C}_{2} \cong\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1\right\rangle
$$

- So any group generated by three involutions is a homomorphic image of E.
- Clearly the group $m^{\star n}$ possesses monomial automorphisms which permute the symmetric generators and raise them to powers co-prime to m. The group M of all monomial automorphisms of $m^{\star n}$ thus has order

$$
|M|=n!\phi(m)^{n}, \text { where } \phi \text { is the Euler totient function. }
$$

Motivation

- If $H \leq M$ then we can thus form a semi-direct product of shape $m^{\star n}: H$, a progenitor. The elements $\left\{t_{1}, t_{2}, \ldots, t_{n} \mid t_{i}^{m}=1\right\}$ are the symmetric generators.

Motivation

- If $H \leq M$ then we can thus form a semi-direct product of shape $m^{\star n}: H$, a progenitor. The elements $\left\{t_{1}, t_{2}, \ldots, t_{n} \mid t_{i}^{m}=1\right\}$ are the symmetric generators.
- The group $3 \cdot A_{7}$ has a subgroup of index 15 of shape $3 \times L_{2}(7)$ and thus has a 15 -dimensional monomial representation over any field with cube roots of unity, such as \mathbb{Z}_{7}.

Motivation

- If $H \leq M$ then we can thus form a semi-direct product of shape $m^{\star n}: H$, a progenitor. The elements $\left\{t_{1}, t_{2}, \ldots, t_{n} \mid t_{i}^{m}=1\right\}$ are the symmetric generators.
- The group $3 \cdot \mathrm{~A}_{7}$ has a subgroup of index 15 of shape $3 \times \mathrm{L}_{2}(7)$ and thus has a 15-dimensional monomial representation over any field with cube roots of unity, such as \mathbb{Z}_{7}.
- This representation enables us to define a progenitor of shape $P=7^{\star 15}: 3 \cdot A_{7}$ in which the central 3-element squares each of the symmetric generators by conjugation.

Motivation

- If $H \leq M$ then we can thus form a semi-direct product of shape $m^{\star n}: H$, a progenitor. The elements $\left\{t_{1}, t_{2}, \ldots, t_{n} \mid t_{i}^{m}=1\right\}$ are the symmetric generators.
- The group $3 \cdot A_{7}$ has a subgroup of index 15 of shape $3 \times L_{2}(7)$ and thus has a 15-dimensional monomial representation over any field with cube roots of unity, such as \mathbb{Z}_{7}.
- This representation enables us to define a progenitor of shape $P=7^{\star 15}: 3 \cdot A_{7}$ in which the central 3-element squares each of the symmetric generators by conjugation.
- Now A_{7} acts on 15 letters in two distinct ways and it is useful to "double up" to a progenitor of form

$$
P=7^{\star(15+15)}: 3 \cdot S_{7}
$$

in which the "central" 3 squares one set of 15 symmetric generators while fourth powering the other 15 .

- When S_{7} acts on $30=15+15$ letters, the stabilizer of a point, t_{1} say, which is isomorphic to $\mathrm{L}_{2}(7)$ has orbits

$$
(1+14)+(7+8)
$$

- When S_{7} acts on $30=15+15$ letters, the stabilizer of a point, t_{1} say, which is isomorphic to $\mathrm{L}_{2}(7)$ has orbits

$$
(1+14)+(7+8)
$$

- If s_{1} lies in the 7 -orbit then the group $\left\langle t_{1}, s_{1}\right\rangle$ possesses automorphisms:
- When S_{7} acts on $30=15+15$ letters, the stabilizer of a point, t_{1} say, which is isomorphic to $\mathrm{L}_{2}(7)$ has orbits

$$
(1+14)+(7+8)
$$

- If s_{1} lies in the 7 -orbit then the group $\left\langle t_{1}, s_{1}\right\rangle$ possesses automorphisms:
(i) z, squaring t_{1} and 4 th powering s_{1}; and
- When S_{7} acts on $30=15+15$ letters, the stabilizer of a point, t_{1} say, which is isomorphic to $\mathrm{L}_{2}(7)$ has orbits

$$
(1+14)+(7+8)
$$

- If s_{1} lies in the 7 -orbit then the group $\left\langle t_{1}, s_{1}\right\rangle$ possesses automorphisms:
(i) z, squaring t_{1} and 4 th powering s_{1}; and
(ii) d, interchanging t_{1} and $s_{1}=t_{1}^{d}$.
- When S_{7} acts on $30=15+15$ letters, the stabilizer of a point, t_{1} say, which is isomorphic to $\mathrm{L}_{2}(7)$ has orbits

$$
(1+14)+(7+8)
$$

- If s_{1} lies in the 7 -orbit then the group $\left\langle t_{1}, s_{1}\right\rangle$ possesses automorphisms:
(i) z, squaring t_{1} and 4 th powering s_{1}; and
(ii) d, interchanging t_{1} and $s_{1}=t_{1}^{d}$.
- The linear group $L_{2}(7)$ is such a group and the relator $\left(d t_{1}\right)^{3}$ defines the group. If we factor out this relator from the progenitor P we obtain:
- When S_{7} acts on $30=15+15$ letters, the stabilizer of a point, t_{1} say, which is isomorphic to $\mathrm{L}_{2}(7)$ has orbits

$$
(1+14)+(7+8)
$$

- If s_{1} lies in the 7 -orbit then the group $\left\langle t_{1}, s_{1}\right\rangle$ possesses automorphisms:
(i) z, squaring t_{1} and 4 th powering s_{1}; and
(ii) d, interchanging t_{1} and $s_{1}=t_{1}^{d}$.
- The linear group $L_{2}(7)$ is such a group and the relator $\left(d t_{1}\right)^{3}$ defines the group. If we factor out this relator from the progenitor P we obtain:
$\frac{7^{\star(15+15)}: 3 \cdot S_{7}}{\left(d t_{1}\right)^{3}} \cong \mathrm{He}$, the Held sporadic simple group.

An alternative progenitor

- A group of shape $3 \times S_{n}$ has a subgroup to index $\binom{n}{2}$ of shape $6 \times S_{n-2}$ and so $3 \times S_{n}$ has an $\binom{n}{2}$ monomial representation over any field containing 6th roots of unity. Again \mathbb{Z}_{7} is a candidate.

An alternative progenitor

- A group of shape $3 \times S_{n}$ has a subgroup to index $\binom{n}{2}$ of shape $6 \times S_{n-2}$ and so $3 \times S_{n}$ has an $\binom{n}{2}$ monomial representation over any field containing 6th roots of unity. Again \mathbb{Z}_{7} is a candidate.
- So we may form the progenitor

$$
P_{n}=7^{\star\binom{n}{2}}:\left(3 \times \mathrm{S}_{n}\right)
$$

where a central element z of order 3 squares each of the symmetric generators, and ask what (almost) simple images such a group might have.

The complete graph K_{n}

- The $\binom{n}{2}$ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which $t_{j i}=t_{i j}^{-1}$.

The complete graph K_{n}

- The $\binom{n}{2}$ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which $t_{j i}=t_{i j}^{-1}$.
- Thus $t_{i j}^{z}=t_{i j}^{2}$ and (123): $t_{12} \rightarrow t_{23} \rightarrow t_{31}=t_{13}^{-1}$, simply permuting the subscripts.

The complete graph K_{n}

- The $\binom{n}{2}$ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which $t_{j i}=t_{i j}^{-1}$.
- Thus $t_{i j}^{z}=t_{i j}^{2}$ and (123): $t_{12} \rightarrow t_{23} \rightarrow t_{31}=t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing

The complete graph K_{n}

- The $\binom{n}{2}$ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which $t_{j i}=t_{i j}^{-1}$.
- Thus $t_{i j}^{z}=t_{i j}^{2}$ and (123): $t_{12} \rightarrow t_{23} \rightarrow t_{31}=t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing
(i) an automorphism which squares each of them;

The complete graph K_{n}

- The $\binom{n}{2}$ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which $t_{j i}=t_{i j}^{-1}$.
- Thus $t_{i j}^{z}=t_{i j}^{2}$ and (123): $t_{12} \rightarrow t_{23} \rightarrow t_{31}=t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing
(i) an automorphism which squares each of them;
(ii) an automorphism which cycles them, and

The complete graph K_{n}

- The $\binom{n}{2}$ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which $t_{j i}=t_{i j}^{-1}$.
- Thus $t_{i j}^{z}=t_{i j}^{2}$ and (123): $t_{12} \rightarrow t_{23} \rightarrow t_{31}=t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing
(i) an automorphism which squares each of them;
(ii) an automorphism which cycles them, and
(iii) an automorphism which inverts one them, while interchanging another with the inverse of the third.

The complete graph K_{n}

- The $\binom{n}{2}$ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which $t_{j i}=t_{i j}^{-1}$.
- Thus $t_{i j}^{z}=t_{i j}^{2}$ and (123): $t_{12} \rightarrow t_{23} \rightarrow t_{31}=t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing
(i) an automorphism which squares each of them;
(ii) an automorphism which cycles them, and
(iii) an automorphism which inverts one them, while interchanging another with the inverse of the third.
- Among such groups are $\mathrm{L}_{2}(8): 3, \mathrm{~S}_{7}, \mathrm{U}_{3}(3): 2$.

The triangle progenitor P_{3}.

A free product of three copies of C_{7} on which certain automorphisms have been imposed.

$$
\begin{gathered}
7 \star 3: \\
\left\langle t_{12}, t_{23}, t_{31}\right\rangle\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
(1 & 2 & 3)
\end{array}\right)\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) .
\end{gathered}
$$

The unitary group $\mathrm{U}_{3}(3)$.

- GF_{9}, the field of order 9 , is taken to be $\left\{0, \pm 1, \pm i, \pm 1 \pm i \mid i^{2}=-1\right\}$ and we let α denote the field automorphism which interchanges i and $-i$.

The unitary group $\mathrm{U}_{3}(3)$.

- GF_{9}, the field of order 9 , is taken to be $\left\{0, \pm 1, \pm i, \pm 1 \pm i \mid i^{2}=-1\right\}$ and we let α denote the field automorphism which interchanges i and $-i$.
- We let

$$
A:=\left(\begin{array}{ccc}
1+i & i & i \\
i & 1+i & i \\
i & i & 1+i
\end{array}\right) ; Z:=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

The unitary group $\mathrm{U}_{3}(3)$.

- GF_{9}, the field of order 9 , is taken to be $\left\{0, \pm 1, \pm i, \pm 1 \pm i \mid i^{2}=-1\right\}$ and we let α denote the field automorphism which interchanges i and $-i$.
- We let

$$
A:=\left(\begin{array}{ccc}
1+i & i & i \\
i & 1+i & i \\
i & i & 1+i
\end{array}\right) ; Z:=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

- Matrix A, which has order 3, is visibly unitary and symmetric and so conjugation by α inverts it; moreover Z, which corresponds to a rotation of the three coordinates, commutes with A. Thus

$$
\langle Z, A, \alpha\rangle \cong 3 \times \mathrm{S}_{3}
$$

Symmetric generators in $\mathrm{U}_{3}(3)$.

As symmetric generators we take $t s:=\left[t_{12}, t_{23}, t_{31}\right]=$

$$
\left[\left(\begin{array}{ccc}
i & 1 & -1-i \\
1 & 1-i & i \\
-1-i & i & -i
\end{array}\right),\left(\begin{array}{ccc}
1 & -1 & -1-i \\
-1+i & -1+i & 0 \\
1 & -1 & 1+i
\end{array}\right),\left(\begin{array}{ccc}
1 & -1+i & 1 \\
-1 & -1+i & -1 \\
-1-i & 0 & 1+i
\end{array}\right)\right]
$$

and find that $t_{12} t_{23}^{4} t_{12} t_{23}^{3} t_{12}^{3}=A^{2} Z$.

- If we let $x=Z \alpha, y=A, t=t_{12}$ then we obtain the presentation

$$
\left\langle x, y, t \mid x^{6}=y^{3}=y^{\times} y=t^{7}=t^{x} t^{2}=t\left(t^{y}\right)^{4} t\left(t^{y}\right)^{3} t^{3} x^{2} y=1\right\rangle \cong \mathrm{U}_{3}(3): 2 .
$$

Symmetric generators in $\mathrm{U}_{3}(3)$.

As symmetric generators we take $t s:=\left[t_{12}, t_{23}, t_{31}\right]=$

$$
\left[\left(\begin{array}{ccc}
i & 1 & -1-i \\
1 & 1-i & i \\
-1-i & i & -i
\end{array}\right),\left(\begin{array}{ccc}
1 & -1 & -1-i \\
-1+i & -1+i & 0 \\
1 & -1 & 1+i
\end{array}\right),\left(\begin{array}{ccc}
1 & -1+i & 1 \\
-1 & -1+i & -1 \\
-1-i & 0 & 1+i
\end{array}\right)\right]
$$

and find that $t_{12} t_{23}^{4} t_{12} t_{23}^{3} t_{12}^{3}=A^{2} Z$.

- If we let $x=Z \alpha, y=A, t=t_{12}$ then we obtain the presentation
$\left\langle x, y, t \mid x^{6}=y^{3}=y^{x} y=t^{7}=t^{x} t^{2}=t\left(t^{y}\right)^{4} t\left(t^{y}\right)^{3} t^{3} x^{2} y=1\right\rangle \cong \mathrm{U}_{3}(3): 2$.
- > $\mathrm{g}<\mathrm{x}, \mathrm{y}, \mathrm{t}>:=G \mathrm{Group}<\mathrm{x}, \mathrm{y}, \mathrm{t} \mid \mathrm{x} \wedge 6=\mathrm{y}^{\wedge} 3=\mathrm{y}^{\wedge} \mathrm{x} * \mathrm{y}=\mathrm{t} \mathrm{t}^{\wedge} 7=\mathrm{t} \times \mathrm{x} * \mathrm{t}{ }^{\wedge} 2=$
$>\mathrm{t} *(\mathrm{t} \wedge \mathrm{y}) \wedge 4 * \mathrm{t} *(\mathrm{t} \wedge \mathrm{y})^{\wedge} 3 * \mathrm{t}^{\wedge} 3 * \mathrm{x}^{\wedge} 2 * \mathrm{y}=1>$;
> \#g;
12096

"Doubling up"

- We find that $t_{i j} t_{k i}$ has order 4, for distinct i, j, k.

"Doubling up"

- We find that $t_{i j} t_{k i}$ has order 4, for distinct i, j, k.
- Moreover

$$
\left(t_{12} t_{31}\right)^{2}=\left(t_{23} t_{12}\right)^{2}=\left(t_{31} t_{23}\right)^{2}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

"Doubling up"

- We find that $t_{i j} t_{k i}$ has order 4, for distinct i, j, k.
- Moreover

$$
\left(t_{12} t_{31}\right)^{2}=\left(t_{23} t_{12}\right)^{2}=\left(t_{31} t_{23}\right)^{2}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

- Thus $d=\left(t_{i j} t_{k i}\right)^{2}$, for distinct i, j, k is independent of the order in which i, j, k occur and thus commutes with our S_{3}. It visibly inverts z.

"Doubling up"

- We find that $t_{i j} t_{k i}$ has order 4, for distinct i, j, k.
- Moreover

$$
\left(t_{12} t_{31}\right)^{2}=\left(t_{23} t_{12}\right)^{2}=\left(t_{31} t_{23}\right)^{2}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

- Thus $d=\left(t_{i j} t_{k i}\right)^{2}$, for distinct i, j, k is independent of the order in which i, j, k occur and thus commutes with our S_{3}. It visibly inverts z.
- So we can extend our progenitor to have shape

$$
7^{\star(3+3)}:\left(S_{3} \times S_{3}\right)
$$

"Doubling up"

- We find that $t_{i j} t_{k i}$ has order 4, for distinct i, j, k.
- Moreover

$$
\left(t_{12} t_{31}\right)^{2}=\left(t_{23} t_{12}\right)^{2}=\left(t_{31} t_{23}\right)^{2}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

- Thus $d=\left(t_{i j} t_{k i}\right)^{2}$, for distinct i, j, k is independent of the order in which i, j, k occur and thus commutes with our S_{3}. It visibly inverts z.
- So we can extend our progenitor to have shape

$$
7^{\star(3+3)}:\left(S_{3} \times S_{3}\right)
$$

- We define $t_{i j}^{d}=s_{i j}$, then $\left\langle t_{i j}, s_{i j}\right\rangle \cong \mathrm{L}_{2}(7)$

Extending to higher values of n.

- As generators for $3 \times \mathrm{S}_{n}$ we take $x=(12 \ldots n)$ and $y=(12) z$ when we see that

$$
x^{n}=y^{6}=\left[x, y^{2}\right]=\left(x y^{3}\right)^{n-1}=[x, y]^{3}=\left[x^{2}, y\right]^{2}=1
$$

holds for $n=4,5,6,7$ and indeed, gives a presentation for the group:

Extending to higher values of n.

- As generators for $3 \times \mathrm{S}_{n}$ we take $x=(12 \ldots n)$ and $y=(12) z$ when we see that

$$
x^{n}=y^{6}=\left[x, y^{2}\right]=\left(x y^{3}\right)^{n-1}=[x, y]^{3}=\left[x^{2}, y\right]^{2}=1
$$

holds for $n=4,5,6,7$ and indeed, gives a presentation for the group:

- > for i in [4..7] do
for> $g\langle x, y>:=G r o u p<x, y| x \wedge i=y \wedge 6=\left(x, y^{\wedge} 2\right)=\left(x * y^{\wedge} 3\right)^{\wedge}(i-1)=$
for> ($\mathrm{x}, \mathrm{y})^{\wedge} 3=\left(\mathrm{x}^{\wedge} 2, \mathrm{y}\right)^{\wedge} 2=1>$;
for> i,\#g;
for> end for;
472
5360
62160
715120

A presentation for the progenitor P_{n}

- We shall let $t=t_{12}$ when we see that y squares and inverts t; thus $t^{y} t^{2}=1$.

A presentation for the progenitor P_{n}

- We shall let $t=t_{12}$ when we see that y squares and inverts t; thus $t^{y} t^{2}=1$.
 have generators for the normalizer of $\left\langle t_{12}\right\rangle$ in N.

A presentation for the progenitor P_{n}

- We shall let $t=t_{12}$ when we see that y squares and inverts t; thus $t^{y} t^{2}=1$.
 have generators for the normalizer of $\left\langle t_{12}\right\rangle$ in N.
- In order to obtain an expression for our additional relation $R=1$ we note that $[x, y]=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$, so may write

$$
R=t\left(t^{x}\right)^{4} t\left(t^{x}\right)^{3} t^{3} y^{2}[x, y]
$$

A presentation for the progenitor P_{n}

- We shall let $t=t_{12}$ when we see that y squares and inverts t; thus $t^{y} t^{2}=1$.
- Moreover $x[y, x]=\left(\begin{array}{ll}3 & 4 \ldots n) \text { and }\left(y^{3}\right)^{x^{2}}=\left(\begin{array}{ll}3 & 4\end{array}\right) \text { and so we }{ }^{2} \text {. }\end{array}\right.$ have generators for the normalizer of $\left\langle t_{12}\right\rangle$ in N.
- In order to obtain an expression for our additional relation $R=1$ we note that $[x, y]=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$, so may write

$$
R=t\left(t^{x}\right)^{4} t\left(t^{x}\right)^{3} t^{3} y^{2}[x, y]
$$

- We then define

$$
K_{n}=\frac{7^{\star\binom{n}{2}}:\left(3 \times \mathrm{S}_{n}\right)}{R=1}
$$

Coset Enumeration along the chain

- Note that $x y=(23 \ldots n) z$ and $y^{x}=(23) z$ generate $3 \times S_{n-1}$ and so $\left\langle x y, y^{x}, t^{x}\right\rangle$ generates (an image of) K_{n-1}. We perform a coset enumeration of K_{n} over this subgroup.

Coset Enumeration along the chain

- Note that $x y=(23 \ldots n) z$ and $y^{x}=(23) z$ generate $3 \times S_{n-1}$ and so $\left\langle x y, y^{x}, t^{x}\right\rangle$ generates (an image of) K_{n-1}. We perform a coset enumeration of K_{n} over this subgroup.
- > for i in [4..7] do for $>\mathrm{g}\left\langle\mathrm{x}, \mathrm{y}, \mathrm{t}>:=\operatorname{Group}\langle\mathrm{x}, \mathrm{y}, \mathrm{t}| \mathrm{x}^{\wedge} \mathrm{i}=\mathrm{y}^{\wedge} 6=\left(\mathrm{x}, \mathrm{y}^{\wedge} 2\right)=\left(\mathrm{x} * \mathrm{y}^{\wedge} 3\right)^{\wedge}(\mathrm{i}-1\right.$ for> ($\mathrm{x}, \mathrm{y})^{\wedge} 3=\left(\mathrm{x}^{\wedge} 2, \mathrm{y}\right)^{\wedge} 2=$
for $>t^{\wedge} 7=t \wedge y * t \wedge 2=(t, x *(y, x))=(t,(y \wedge 3) \wedge(x \wedge 2))=$
for> $t *(t \wedge x) \wedge 4 * t *(t \wedge x) \wedge 3 * t \wedge 3 * y^{\wedge} 2 *(x, y)=1>$;
for> $h:=s u b\langle g| t \wedge x, x * y, y^{\wedge} x>$;
for> i,Index(g,h:Hard:=true, CosetLimit:=20000000); for> end for;

Coset Enumeration along the chain

- Note that $x y=(23 \ldots n) z$ and $y^{x}=(23) z$ generate $3 \times \mathrm{S}_{n-1}$ and so $\left\langle x y, y^{x}, t^{x}\right\rangle$ generates (an image of) K_{n-1}. We perform a coset enumeration of K_{n} over this subgroup.
- > for i in [4..7] do
for> $g\langle x, y, t>:=G r o u p<x, y, t| x^{\wedge} i=y^{\wedge} 6=\left(x, y^{\wedge} 2\right)=\left(x * y^{\wedge} 3\right)^{\wedge}(i-1$ for> ($\mathrm{x}, \mathrm{y})^{\wedge} 3=\left(\mathrm{x}^{\wedge} 2, \mathrm{y}\right)^{\wedge} 2=$
for> $t^{\wedge} 7=t^{\wedge} y * t^{\wedge} 2=(t, x *(y, x))=\left(t,\left(y^{\wedge} 3\right)^{\wedge}\left(x^{\wedge} 2\right)\right)=$
for> $\mathrm{t} *(\mathrm{t} \wedge \mathrm{x}) \wedge 4 * \mathrm{t} *(\mathrm{t} \wedge \mathrm{x})^{\wedge} 3 * \mathrm{t}^{\wedge} 3 * \mathrm{y}^{\wedge} 2 *(\mathrm{x}, \mathrm{y})=1>$;
for> $h:=s u b\langle g| t \wedge x, x * y, y^{\wedge} x>$;
for> i,Index(g,h:Hard:=true, CosetLimit:=20000000);
for> end for;
- 4100

5416
65346
73091200

Identification of the groups involved

Those familiar with the groups involved will recognise that K4: 100 is the index of $\mathrm{U}_{3}(3)$ in HJ , the Hall-Janko group;

Identification of the groups involved

Those familiar with the groups involved will recognise that K4: 100 is the index of $\mathrm{U}_{3}(3)$ in HJ , the Hall-Janko group;
$\mathrm{K} 5: 416$ is the index of HJ in the exceptional Chevalley group $\mathrm{G}_{2}(4)$;

Identification of the groups involved

Those familiar with the groups involved will recognise that K4: 100 is the index of $\mathrm{U}_{3}(3)$ in HJ , the Hall-Janko group;
$\mathrm{K} 5: 416$ is the index of HJ in the exceptional Chevalley group $\mathrm{G}_{2}(4)$;
K6: $5346=3 \times 1782$ is the index of $\mathrm{G}_{2}(4)$ in 3 Suz, the triple cover of the Suzuki sporadic simple group;

Identification of the groups involved

Those familiar with the groups involved will recognise that K4: 100 is the index of $\mathrm{U}_{3}(3)$ in HJ , the Hall-Janko group;
$\mathrm{K} 5: 416$ is the index of HJ in the exceptional Chevalley group $\mathrm{G}_{2}(4)$;
K6: $5346=3 \times 1782$ is the index of $\mathrm{G}_{2}(4)$ in 3 Suz, the triple cover of the Suzuki sporadic simple group;
K7: $3091200=2 \times 1545600$ is the index of $3 \cdot \mathrm{Suz}$ in Co_{1}, the largest Conway simple group.

Higher values of n

- The groups defined by our family of presentations are

$$
\mathrm{U}_{3}(3): 2, \quad \mathrm{HJ}: 2, \quad \mathrm{G}_{2}(4): 2, \quad 3: \mathrm{Suz}: 2 \text { and } \mathrm{Co}_{1} \times 2
$$

Higher values of n

- The groups defined by our family of presentations are

$$
\mathrm{U}_{3}(3): 2, \quad \mathrm{HJ}: 2, \quad \mathrm{G}_{2}(4): 2, \quad 3: \mathrm{Suz}: 2 \text { and } \mathrm{Co}_{1} \times 2
$$

- In order to proceed we must factor out the central element in K_{7} to obtain Co_{1}. This leads to K_{8} and subsequent groups collapsing to the trivial group.

Higher values of n

- The groups defined by our family of presentations are

$$
\mathrm{U}_{3}(3): 2, \quad \mathrm{HJ}: 2, \quad \mathrm{G}_{2}(4): 2, \quad 3: \mathrm{Suz}: 2 \text { and } \mathrm{Co}_{1} \times 2
$$

- In order to proceed we must factor out the central element in K_{7} to obtain Co_{1}. This leads to K_{8} and subsequent groups collapsing to the trivial group.
- However, if we restrict our imposed automorphisms to $3 \times \mathrm{A}_{n}$, then $K A_{9} \cong \mathrm{Co}_{1}$, in which a 3 -cycle such as (123) lies in the centre of the copy of $3 \cdot \mathrm{Suz}$ generated by the complete 6 -graph on the remaining 6 points.

The complete 9-graph

In fact we end up with a complete graph on 9 vertices such that (1) Each vertex corresponds to a copy of S_{4};

The complete 9-graph

In fact we end up with a complete graph on 9 vertices such that
(1) Each vertex corresponds to a copy of S_{4};
(2) Each edge corresponds to a copy of $L_{2}(7)$;

The complete 9-graph

In fact we end up with a complete graph on 9 vertices such that
(1) Each vertex corresponds to a copy of S_{4};
(2) Each edge corresponds to a copy of $L_{2}(7)$;
(3) Each triangle corresponds to a copy of $\mathrm{U}_{3}(3)$;

The complete 9-graph

In fact we end up with a complete graph on 9 vertices such that
(1) Each vertex corresponds to a copy of S_{4};
(2) Each edge corresponds to a copy of $L_{2}(7)$;
(3) Each triangle corresponds to a copy of $\mathrm{U}_{3}(3)$;
(4) Each 4-graph corresponds to a copy of HJ;

The complete 9-graph

In fact we end up with a complete graph on 9 vertices such that
(1) Each vertex corresponds to a copy of S_{4};
(2) Each edge corresponds to a copy of $L_{2}(7)$;
(3) Each triangle corresponds to a copy of $\mathrm{U}_{3}(3)$;
(4) Each 4-graph corresponds to a copy of HJ;
(5) Each 5-graph corresponds to a copy of $\mathrm{G}_{2}(4)$;

The complete 9-graph

In fact we end up with a complete graph on 9 vertices such that
(1) Each vertex corresponds to a copy of S_{4};
(2) Each edge corresponds to a copy of $L_{2}(7)$;
(3) Each triangle corresponds to a copy of $\mathrm{U}_{3}(3)$;
(4) Each 4-graph corresponds to a copy of HJ;
(5) Each 5-graph corresponds to a copy of $\mathrm{G}_{2}(4)$;
(6) Each 6-graph corresponds to a copy of 3 Suz;

The complete 9-graph

In fact we end up with a complete graph on 9 vertices such that
(1) Each vertex corresponds to a copy of S_{4};
(2) Each edge corresponds to a copy of $L_{2}(7)$;
(3) Each triangle corresponds to a copy of $\mathrm{U}_{3}(3)$;
(4) Each 4-graph corresponds to a copy of HJ;
(5) Each 5-graph corresponds to a copy of $\mathrm{G}_{2}(4)$;
(6) Each 6 -graph corresponds to a copy of 3 Suz;
(7) Each n-graph for $n \geq 7$ corresponds to a copy of Co_{1};

The complete 9-graph

In fact we end up with a complete graph on 9 vertices such that
(1) Each vertex corresponds to a copy of S_{4};
(2) Each edge corresponds to a copy of $\mathrm{L}_{2}(7)$;
(3) Each triangle corresponds to a copy of $\mathrm{U}_{3}(3)$;
(4) Each 4-graph corresponds to a copy of HJ;
(5) Each 5-graph corresponds to a copy of $\mathrm{G}_{2}(4)$;
(6) Each 6 -graph corresponds to a copy of 3 Suz;
(7) Each n-graph for $n \geq 7$ corresponds to a copy of Co_{1};
(sg) Every subgraph generates the same group as the smallest complete graph containing it.

The Leech lattice \wedge

- The binary Golay code \mathcal{C} is a 12 -dimensional subspace of the space \mathbb{Z}_{2}^{24} whose codewords (vectors) all have weight $0,8,12$, 16 or 24. The support of a codeword is known as a \mathcal{C}-set.

The Leech lattice \wedge

- The binary Golay code \mathcal{C} is a 12-dimensional subspace of the space \mathbb{Z}_{2}^{24} whose codewords (vectors) all have weight $0,8,12$, 16 or 24 . The support of a codeword is known as a \mathcal{C}-set.
- Having fixed a copy of \mathcal{C} on our 24 coordinate positions the Leech lattice may be defined to be the set of all 24-dimensional integral vectors $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$ such that

The Leech lattice \wedge

- The binary Golay code \mathcal{C} is a 12 -dimensional subspace of the space \mathbb{Z}_{2}^{24} whose codewords (vectors) all have weight $0,8,12$, 16 or 24 . The support of a codeword is known as a \mathcal{C}-set.
- Having fixed a copy of \mathcal{C} on our 24 coordinate positions the Leech lattice may be defined to be the set of all 24-dimensional integral vectors $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$ such that (i) all entries have the same parity;

The Leech lattice \wedge

- The binary Golay code \mathcal{C} is a 12 -dimensional subspace of the space \mathbb{Z}_{2}^{24} whose codewords (vectors) all have weight $0,8,12$, 16 or 24. The support of a codeword is known as a \mathcal{C}-set.
- Having fixed a copy of \mathcal{C} on our 24 coordinate positions the Leech lattice may be defined to be the set of all 24-dimensional integral vectors $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$ such that
(i) all entries have the same parity;
(ii) the set of i such that $x_{i} \equiv m$ modulo 4 forms a \mathcal{C}-set for $m=0,1,2,3 ;$

The Leech lattice \wedge

- The binary Golay code \mathcal{C} is a 12-dimensional subspace of the space \mathbb{Z}_{2}^{24} whose codewords (vectors) all have weight $0,8,12$, 16 or 24 . The support of a codeword is known as a \mathcal{C}-set.
- Having fixed a copy of \mathcal{C} on our 24 coordinate positions the Leech lattice may be defined to be the set of all 24-dimensional integral vectors $\left(x_{1}, x_{2}, \ldots, x_{24}\right)$ such that
(i) all entries have the same parity;
(ii) the set of i such that $x_{i} \equiv m$ modulo 4 forms a \mathcal{C}-set for $m=0,1,2,3$;
(iii) the sum of the entries is congruent to 0 modulo 8 if the entries are even, and to 4 modulo 8 if the entries are odd.

The Miracle Octad Generator

- The 24 points permuted by M_{24} may be arranged in a 4×6 array, which we think of as three 4×2 arrays known as bricks, in such a way that the S_{3} (6 permutations) which bodily rearrange the bricks are elements of M_{24}.

The Miracle Octad Generator

- The 24 points permuted by M_{24} may be arranged in a 4×6 array, which we think of as three 4×2 arrays known as bricks, in such a way that the S_{3} (6 permutations) which bodily rearrange the bricks are elements of M_{24}.
- Denoting this group by $B \cong S_{3}$ we have that in M_{24} the subgroup B centralizes a copy of $\mathrm{L}_{2}(7)$, and in $\cdot \mathrm{O}$ it centralizes a copy of the alternating group A_{9}.

The Miracle Octad Generator

- The 24 points permuted by M_{24} may be arranged in a 4×6 array, which we think of as three 4×2 arrays known as bricks, in such a way that the S_{3} (6 permutations) which bodily rearrange the bricks are elements of M_{24}.
- Denoting this group by $B \cong S_{3}$ we have that in M_{24} the subgroup B centralizes a copy of $\mathrm{L}_{2}(7)$, and in $\cdot \mathrm{O}$ it centralizes a copy of the alternating group A9.
- For convenience we label the 24 points as shown

The centralizer of the MOG group

(a)

(b)

(c)

(d)

(e)

(h)

Label	Action in $\mathrm{L}_{2}(7)$	Action in A_{9}
(a)	(1234567)	(1234567)
(b)	$(87)(16)(23)(45)$	$(87)(16)(23)(45)$
(c)	$(124)(365)$	$(124)(365)$
(d)		$(87)(13)(26)(45)$
(e)	$(85)(74)(12)(36)$	$(85)(74)(12)(36)$
(h)		$(142)(365)$
(j)		$(89)(16)(25)(34)$

Completing A_{8} to A_{9}

We seek matrix J representing $j=(89)(16)(25)(34)$ which inverts (a) and commutes with (c), represented by matrices A and C respectively.

$$
B=\left\langle\left[\begin{array}{ccc}
0 & l_{8} & 0 \\
0 & 0 & l_{8} \\
l_{8} & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
I_{8} & 0 & 0 \\
0 & 0 & l_{8} \\
0 & I_{8} & 0
\end{array}\right]\right\rangle \cong S_{3}
$$

Completing A_{8} to A_{9}

We seek matrix J representing $j=(89)(16)(25)(34)$ which inverts (a) and commutes with (c), represented by matrices A and C respectively.

$$
B=\left\langle\left[\begin{array}{ccc}
0 & I_{8} & 0 \\
0 & 0 & l_{8} \\
l_{8} & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
I_{8} & 0 & 0 \\
0 & 0 & l_{8} \\
0 & I_{8} & 0
\end{array}\right]\right\rangle \cong \mathrm{S}_{3}
$$

- Any matrix commuting with B has shape

$$
\left[\begin{array}{lll}
X & Y & Y \\
Y & X & Y \\
Y & Y & X
\end{array}\right]
$$

which enables us to write down the precise form of J.

Extending to A_{9}

- We seek an element J corresponding to $(89)(16)(25)(34)$, which commutes with $C \sim\left(\begin{array}{ll}1 & 2\end{array}\right)\binom{3}{6}$ and inverts A~ (1 234567).

Extending to A_{9}

- We seek an element J corresponding to $(89)(16)(25)(34)$, which commutes with $C \sim\left(\begin{array}{ll}1 & 2\end{array}\right)(365)$ and inverts $A \sim\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 7\end{array}\right)$.

$$
X:=\left(\begin{array}{llllllll}
1 & 4 & 1 & 4 & 4 & 1 & 1 & 1 \\
4 & 1 & 4 & 4 & 1 & 1 & 1 & 1 \\
1 & 4 & 4 & 1 & 1 & 1 & 4 & 1 \\
4 & 4 & 1 & 1 & 1 & 4 & 1 & 1 \\
4 & 1 & 1 & 1 & 4 & 1 & 4 & 1 \\
1 & 1 & 1 & 4 & 1 & 4 & 4 & 1 \\
1 & 1 & 4 & 1 & 4 & 4 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 5
\end{array}\right) ; Y:=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 4 & 1 & 1 \\
1 & 1 & 1 & 1 & 4 & 1 & 1 & 1 \\
1 & 1 & 1 & 4 & 1 & 1 & 1 & 1 \\
1 & 1 & 4 & 1 & 1 & 1 & 1 & 1 \\
1 & 4 & 1 & 1 & 1 & 1 & 1 & 1 \\
4 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 4 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 4
\end{array}\right)
$$

The symmetric generator t_{89}

- The matrix T_{89} which we seek must

The symmetric generator t_{89}

- The matrix T_{89} which we seek must (i) commute with A, C and H ;

The symmetric generator t_{89}

- The matrix T_{89} which we seek must
(i) commute with A, C and H ;
(ii) be squared by conjugation by Z .

The symmetric generator t_{89}

- The matrix T_{89} which we seek must
(i) commute with A, C and H ;
(ii) be squared by conjugation by Z .
- This leads to $\mathrm{T}_{89}=\left[\begin{array}{rrr}-U & 0 & -U \\ 4 & U^{t} & -4 \\ 4 & -U^{t} & -4\end{array}\right]$ where

The symmetric generator t_{89}

- The matrix T_{89} which we seek must
(i) commute with A, C and H ;
(ii) be squared by conjugation by Z .
- This leads to $\mathrm{T}_{89}=\left[\begin{array}{rrr}-U & 0 & -U \\ 4 & U^{t} & -4 \\ 4 & -U^{t} & -4\end{array}\right]$ where

$$
U=\left[\begin{array}{rrrr|rrrr}
2 & -2 & -2 & 2 & -2 & 2 & 2 & 2 \\
2 & 2 & -2 & -2 & 2 & -2 & 2 & 2 \\
2 & 2 & 2 & -2 & -2 & 2 & -2 & 2 \\
-2 & 2 & 2 & 2 & -2 & -2 & 2 & 2 \\
\hline 2 & -2 & 2 & 2 & 2 & -2 & -2 & 2 \\
-2 & 2 & -2 & 2 & 2 & 2 & -2 & 2 \\
-2 & -2 & 2 & -2 & 2 & 2 & 2 & 2 \\
-2 & -2 & -2 & -2 & -2 & -2 & -2 & 2
\end{array}\right] .
$$

The symmetric generator t_{89}

- The matrix T_{89} which we seek must
(i) commute with A, C and H ;
(ii) be squared by conjugation by Z .
- This leads to $\mathrm{T}_{89}=\left[\begin{array}{rrr}-U & 0 & -U \\ 4 & U^{t} & -4 \\ 4 & -U^{t} & -4\end{array}\right]$ where

$$
U=\left[\begin{array}{rrrr|rrrr}
2 & -2 & -2 & 2 & -2 & 2 & 2 & 2 \\
2 & 2 & -2 & -2 & 2 & -2 & 2 & 2 \\
2 & 2 & 2 & -2 & -2 & 2 & -2 & 2 \\
-2 & 2 & 2 & 2 & -2 & -2 & 2 & 2 \\
\hline 2 & -2 & 2 & 2 & 2 & -2 & -2 & 2 \\
-2 & 2 & -2 & 2 & 2 & 2 & -2 & 2 \\
-2 & -2 & 2 & -2 & 2 & 2 & 2 & 2 \\
-2 & -2 & -2 & -2 & -2 & -2 & -2 & 2
\end{array}\right] .
$$

- The matrix U satisfies $U^{2}=4 U-4 I ; \quad U U^{t}=4 I=U+U^{t}$, so verification that T_{89} has required properties is straightforward.

