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Notation

I We denote a free product of n copies of the cyclic group Cm

by m?n.

I Thus

E = 2?3 ∼= C2 ? C2 ? C2
∼= 〈a, b, c |a2 = b2 = c2 = 1〉.

I So any group generated by three involutions is a homomorphic
image of E .

I Clearly the group m?n possesses monomial automorphisms
which permute the symmetric generators and raise them to
powers co-prime to m. The group M of all monomial
automorphisms of m?n thus has order

|M| = n! φ(m)n, where φ is the Euler totient function.

Rob Curtis, Birmingham The Thompson chain of perfect groups



Notation

I We denote a free product of n copies of the cyclic group Cm

by m?n.

I Thus

E = 2?3 ∼= C2 ? C2 ? C2
∼= 〈a, b, c |a2 = b2 = c2 = 1〉.

I So any group generated by three involutions is a homomorphic
image of E .

I Clearly the group m?n possesses monomial automorphisms
which permute the symmetric generators and raise them to
powers co-prime to m. The group M of all monomial
automorphisms of m?n thus has order

|M| = n! φ(m)n, where φ is the Euler totient function.

Rob Curtis, Birmingham The Thompson chain of perfect groups



Notation

I We denote a free product of n copies of the cyclic group Cm

by m?n.

I Thus

E = 2?3 ∼= C2 ? C2 ? C2
∼= 〈a, b, c |a2 = b2 = c2 = 1〉.

I So any group generated by three involutions is a homomorphic
image of E .

I Clearly the group m?n possesses monomial automorphisms
which permute the symmetric generators and raise them to
powers co-prime to m. The group M of all monomial
automorphisms of m?n thus has order

|M| = n! φ(m)n, where φ is the Euler totient function.

Rob Curtis, Birmingham The Thompson chain of perfect groups



Notation

I We denote a free product of n copies of the cyclic group Cm

by m?n.

I Thus

E = 2?3 ∼= C2 ? C2 ? C2
∼= 〈a, b, c |a2 = b2 = c2 = 1〉.

I So any group generated by three involutions is a homomorphic
image of E .

I Clearly the group m?n possesses monomial automorphisms
which permute the symmetric generators and raise them to
powers co-prime to m. The group M of all monomial
automorphisms of m?n thus has order

|M| = n! φ(m)n, where φ is the Euler totient function.

Rob Curtis, Birmingham The Thompson chain of perfect groups



Motivation

I If H ≤ M then we can thus form a semi-direct product of
shape m?n : H, a progenitor. The elements
{t1, t2, . . . , tn | tmi = 1} are the symmetric generators.

I The group 3.A7 has a subgroup of index 15 of shape 3×L2(7)
and thus has a 15-dimensional monomial representation over
any field with cube roots of unity, such as Z7.

I This representation enables us to define a progenitor of shape
P = 7?15 : 3.A7 in which the central 3-element squares each
of the symmetric generators by conjugation.

I Now A7 acts on 15 letters in two distinct ways and it is useful
to ”double up” to a progenitor of form

P = 7?(15+15) : 3.S7

in which the ”central” 3 squares one set of 15 symmetric
generators while fourth powering the other 15.

Rob Curtis, Birmingham The Thompson chain of perfect groups



Motivation

I If H ≤ M then we can thus form a semi-direct product of
shape m?n : H, a progenitor. The elements
{t1, t2, . . . , tn | tmi = 1} are the symmetric generators.

I The group 3.A7 has a subgroup of index 15 of shape 3×L2(7)
and thus has a 15-dimensional monomial representation over
any field with cube roots of unity, such as Z7.

I This representation enables us to define a progenitor of shape
P = 7?15 : 3.A7 in which the central 3-element squares each
of the symmetric generators by conjugation.

I Now A7 acts on 15 letters in two distinct ways and it is useful
to ”double up” to a progenitor of form

P = 7?(15+15) : 3.S7

in which the ”central” 3 squares one set of 15 symmetric
generators while fourth powering the other 15.

Rob Curtis, Birmingham The Thompson chain of perfect groups



Motivation

I If H ≤ M then we can thus form a semi-direct product of
shape m?n : H, a progenitor. The elements
{t1, t2, . . . , tn | tmi = 1} are the symmetric generators.

I The group 3.A7 has a subgroup of index 15 of shape 3×L2(7)
and thus has a 15-dimensional monomial representation over
any field with cube roots of unity, such as Z7.

I This representation enables us to define a progenitor of shape
P = 7?15 : 3.A7 in which the central 3-element squares each
of the symmetric generators by conjugation.

I Now A7 acts on 15 letters in two distinct ways and it is useful
to ”double up” to a progenitor of form

P = 7?(15+15) : 3.S7

in which the ”central” 3 squares one set of 15 symmetric
generators while fourth powering the other 15.

Rob Curtis, Birmingham The Thompson chain of perfect groups



Motivation

I If H ≤ M then we can thus form a semi-direct product of
shape m?n : H, a progenitor. The elements
{t1, t2, . . . , tn | tmi = 1} are the symmetric generators.

I The group 3.A7 has a subgroup of index 15 of shape 3×L2(7)
and thus has a 15-dimensional monomial representation over
any field with cube roots of unity, such as Z7.

I This representation enables us to define a progenitor of shape
P = 7?15 : 3.A7 in which the central 3-element squares each
of the symmetric generators by conjugation.

I Now A7 acts on 15 letters in two distinct ways and it is useful
to ”double up” to a progenitor of form

P = 7?(15+15) : 3.S7

in which the ”central” 3 squares one set of 15 symmetric
generators while fourth powering the other 15.

Rob Curtis, Birmingham The Thompson chain of perfect groups



I When S7 acts on 30 = 15+15 letters, the stabilizer of a point,
t1 say, which is isomorphic to L2(7) has orbits

(1 + 14) + (7 + 8).

I If s1 lies in the 7-orbit then the group 〈t1, s1〉 possesses
automorphisms:

(i) z , squaring t1 and 4th powering s1; and
(ii) d , interchanging t1 and s1 = td1 .

I The linear group L2(7) is such a group and the relator (dt1)3

defines the group. If we factor out this relator from the
progenitor P we obtain:

I

7?(15+15) : 3.S7
(dt1)3

∼= He, the Held sporadic simple group.
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An alternative progenitor

I A group of shape 3× Sn has a subgroup to index
(n
2

)
of shape

6× Sn−2 and so 3× Sn has an
(n
2

)
monomial representation

over any field containing 6th roots of unity. Again Z7 is a
candidate.

I So we may form the progenitor

Pn = 7?(
n
2) : (3× Sn),

where a central element z of order 3 squares each of the
symmetric generators, and ask what (almost) simple images
such a group might have.
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The complete graph Kn

I The
(n
2

)
symmetric generators may be thought of as

corresponding to the edges of a complete (directed) graph on
n vertices, in which tji = t−1

ij .

I Thus tzij = t2ij and (1 2 3) : t12 → t23 → t31 = t−1
13 , simply

permuting the subscripts.
I Initially we must say what a triangle can generate, that is a

group generated by three elements of order 7 possessing

(i) an automorphism which squares each of them;
(ii) an automorphism which cycles them, and

(iii) an automorphism which inverts one them, while interchanging
another with the inverse of the third.

I Among such groups are L2(8) : 3, S7, U3(3) : 2.
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The triangle progenitor P3.

A free product of three copies of C7 on which certain
automorphisms have been imposed.

7?3 : (3× S3)

〈t12, t23, t31〉


2 0 0
0 2 0
0 0 2


z


0 1 0
0 0 1
1 0 0


(1 2 3)


−1 0 0

0 0 −1
0 −1 0


(1 2)

.
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The unitary group U3(3).

I GF9, the field of order 9, is taken to be
{0,±1,±i ,±1± i | i2 = −1} and we let α denote the field
automorphism which interchanges i and −i .

I We let

A :=

 1 + i i i
i 1 + i i
i i 1 + i

 ; Z :=

 0 1 0
0 0 1
1 0 0

 ,

I Matrix A, which has order 3, is visibly unitary and symmetric
and so conjugation by α inverts it; moreover Z , which
corresponds to a rotation of the three coordinates, commutes
with A. Thus

〈Z ,A, α〉 ∼= 3× S3.
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Symmetric generators in U3(3).

As symmetric generators we take ts := [t12, t23, t31] =

 i 1 −1 − i
1 1 − i i

−1 − i i −i

 ,

 1 −1 −1 − i
−1 + i −1 + i 0

1 −1 1 + i

 ,

 1 −1 + i 1
−1 −1 + i −1

−1 − i 0 1 + i



and find that t12t
4
23t12t

3
23t

3
12 = A2Z .

I If we let x = Zα, y = A, t = t12 then we obtain the
presentation

〈x , y , t | x6 = y 3 = y xy = t7 = tx t2 = t(ty )4t(ty )3t3x2y = 1〉 ∼= U3(3) : 2.

I > g<x,y,t>:=Group<x,y,t|x^6=y^3=y^x*y=t^7=t^x*t^2=

> t*(t^y)^4*t*(t^y)^3*t^3*x^2*y=1>;

> #g;

12096
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”Doubling up”

I We find that tij tki has order 4, for distinct i , j , k .

I Moreover

(t12t31)2 = (t23t12)2 = (t31t23)2 =

 0 −1 0
−1 0 0

0 0 −1

 .

I Thus d = (tij tki )
2, for distinct i , j , k is independent of the

order in which i , j , k occur and thus commutes with our S3. It
visibly inverts z .

I So we can extend our progenitor to have shape

7?(3+3) : (S3 × S3).

I We define tdij = sij , then 〈tij , sij〉 ∼= L2(7)
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Extending to higher values of n.

I As generators for 3× Sn we take x = (1 2 . . . n) and
y = (1 2)z when we see that

xn = y6 = [x , y2] = (xy3)n−1 = [x , y ]3 = [x2, y ]2 = 1

holds for n = 4, 5, 6, 7 and indeed,gives a presentation for the
group:

I > for i in [4..7] do

for> g<x,y>:=Group<x,y|x^i=y^6=(x,y^2)=(x*y^3)^(i-1)=

for> (x,y)^3=(x^2,y)^2=1>;

for> i,#g;

for> end for;

4 72

5 360

6 2160

7 15120
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A presentation for the progenitor Pn

I We shall let t = t12 when we see that y squares and inverts t;
thus ty t2 = 1.

I Moreover x [y , x ] = (3 4 . . . n) and (y3)x
2

= (3 4) and so we
have generators for the normalizer of 〈t12〉 in N.

I In order to obtain an expression for our additional relation
R = 1 we note that [x , y ] = (1 2 3), so may write

R = t(tx)4t(tx)3t3y2[x , y ].

I We then define

Kn =
7?(

n
2) : (3× Sn)

R = 1
.
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Coset Enumeration along the chain

I Note that xy = (2 3 . . . n)z and y x = (2 3)z generate
3× Sn−1 and so 〈xy , y x , tx〉 generates (an image of) Kn−1.
We perform a coset enumeration of Kn over this subgroup.

I > for i in [4..7] do

for> g<x,y,t>:=Group<x,y,t|x^i=y^6=(x,y^2)=(x*y^3)^(i-1)=

for> (x,y)^3=(x^2,y)^2=

for> t^7=t^y*t^2=(t,x*(y,x))=(t,(y^3)^(x^2))=

for> t*(t^x)^4*t*(t^x)^3*t^3*y^2*(x,y)=1>;

for> h:=sub<g|t^x,x*y,y^x>;

for> i,Index(g,h:Hard:=true, CosetLimit:=20000000);

for> end for;

I 4 100

5 416

6 5346

7 3091200
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Identification of the groups involved

Those familiar with the groups involved will recognise that

K4: 100 is the index of U3(3) in HJ, the Hall-Janko group;

K5: 416 is the index of HJ in the exceptional Chevalley group
G2(4);

K6: 5346=3 x 1782 is the index of G2(4) in 3.Suz, the triple cover
of the Suzuki sporadic simple group;

K7: 3091200 = 2 x 1545600 is the index of 3.Suz in Co1, the
largest Conway simple group.
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Higher values of n

I The groups defined by our family of presentations are

U3(3) : 2, HJ : 2, G2(4) : 2, 3.Suz : 2 and Co1 × 2.

I In order to proceed we must factor out the central element in
K7 to obtain Co1. This leads to K8 and subsequent groups
collapsing to the trivial group.

I However, if we restrict our imposed automorphisms to 3×An,
then KA9

∼= Co1, in which a 3-cycle such as (1 2 3) lies in the
centre of the copy of 3.Suz generated by the complete
6-graph on the remaining 6 points.

Rob Curtis, Birmingham The Thompson chain of perfect groups



Higher values of n

I The groups defined by our family of presentations are

U3(3) : 2, HJ : 2, G2(4) : 2, 3.Suz : 2 and Co1 × 2.

I In order to proceed we must factor out the central element in
K7 to obtain Co1. This leads to K8 and subsequent groups
collapsing to the trivial group.

I However, if we restrict our imposed automorphisms to 3×An,
then KA9

∼= Co1, in which a 3-cycle such as (1 2 3) lies in the
centre of the copy of 3.Suz generated by the complete
6-graph on the remaining 6 points.

Rob Curtis, Birmingham The Thompson chain of perfect groups



Higher values of n

I The groups defined by our family of presentations are

U3(3) : 2, HJ : 2, G2(4) : 2, 3.Suz : 2 and Co1 × 2.

I In order to proceed we must factor out the central element in
K7 to obtain Co1. This leads to K8 and subsequent groups
collapsing to the trivial group.

I However, if we restrict our imposed automorphisms to 3×An,
then KA9

∼= Co1, in which a 3-cycle such as (1 2 3) lies in the
centre of the copy of 3.Suz generated by the complete
6-graph on the remaining 6 points.

Rob Curtis, Birmingham The Thompson chain of perfect groups



The complete 9-graph

In fact we end up with a complete graph on 9 vertices such that

(1) Each vertex corresponds to a copy of S4;

(2) Each edge corresponds to a copy of L2(7);

(3) Each triangle corresponds to a copy of U3(3);

(4) Each 4-graph corresponds to a copy of HJ;

(5) Each 5-graph corresponds to a copy of G2(4);

(6) Each 6-graph corresponds to a copy of 3.Suz;

(7) Each n-graph for n ≥ 7 corresponds to a copy of Co1;

(sg) Every subgraph generates the same group as the smallest
complete graph containing it.
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The Leech lattice Λ

I The binary Golay code C is a 12-dimensional subspace of the
space Z24

2 whose codewords (vectors) all have weight 0, 8, 12,
16 or 24. The support of a codeword is known as a C-set.

I Having fixed a copy of C on our 24 coordinate positions the
Leech lattice may be defined to be the set of all
24-dimensional integral vectors (x1, x2, . . . , x24) such that

(i) all entries have the same parity;
(ii) the set of i such that xi ≡ m modulo 4 forms a C-set for

m = 0, 1, 2, 3;
(iii) the sum of the entries is congruent to 0 modulo 8 if the entries

are even, and to 4 modulo 8 if the entries are odd.
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The Miracle Octad Generator

I The 24 points permuted by M24 may be arranged in a 4× 6
array, which we think of as three 4× 2 arrays known as bricks,
in such a way that the S3 (6 permutations) which bodily
rearrange the bricks are elements of M24.

I Denoting this group by B ∼= S3 we have that in M24 the
subgroup B centralizes a copy of L2(7), and in ·O it
centralizes a copy of the alternating group A9.

I For convenience we label the 24 points as shown

Rob Curtis, Birmingham The Thompson chain of perfect groups



The Miracle Octad Generator

I The 24 points permuted by M24 may be arranged in a 4× 6
array, which we think of as three 4× 2 arrays known as bricks,
in such a way that the S3 (6 permutations) which bodily
rearrange the bricks are elements of M24.

I Denoting this group by B ∼= S3 we have that in M24 the
subgroup B centralizes a copy of L2(7), and in ·O it
centralizes a copy of the alternating group A9.

I For convenience we label the 24 points as shown

Rob Curtis, Birmingham The Thompson chain of perfect groups



The Miracle Octad Generator

I The 24 points permuted by M24 may be arranged in a 4× 6
array, which we think of as three 4× 2 arrays known as bricks,
in such a way that the S3 (6 permutations) which bodily
rearrange the bricks are elements of M24.

I Denoting this group by B ∼= S3 we have that in M24 the
subgroup B centralizes a copy of L2(7), and in ·O it
centralizes a copy of the alternating group A9.

I For convenience we label the 24 points as shown

Rob Curtis, Birmingham The Thompson chain of perfect groups



The centralizer of the MOG group

Label Action in L2(7) Action in A9

(a) (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)
(b) (8 7)(1 6)(2 3)(4 5) (8 7)(1 6)(2 3)(4 5)
(c) (1 2 4)(3 6 5) (1 2 4)(3 6 5)
(d) (8 7)(1 3)(2 6)(4 5)
(e) (8 5)(7 4)(1 2)(3 6) (8 5)(7 4)(1 2)(3 6)
(h) (1 4 2)(3 6 5)
(j) (8 9)(1 6)(2 5)(3 4)
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Completing A8 to A9

We seek matrix J representing j = (8 9)(1 6)(2 5)(3 4) which
inverts (a) and commutes with (c), represented by matrices A and
C respectively.

I

B = 〈

 0 I8 0
0 0 I8
I8 0 0

 ,
 I8 0 0

0 0 I8
0 I8 0

〉 ∼= S3

I Any matrix commuting with B has shape X Y Y
Y X Y
Y Y X


which enables us to write down the precise form of J.
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Extending to A9

I We seek an element J corresponding to (8 9)(1 6)(2 5)(3 4),
which commutes with C ∼ (1 2 4)(3 6 5) and inverts
A ∼ (1 2 3 4 5 6 7).

I

X :=



1 4 1 4 4 1 1 1
4 1 4 4 1 1 1 1
1 4 4 1 1 1 4 1
4 4 1 1 1 4 1 1
4 1 1 1 4 1 4 1
1 1 1 4 1 4 4 1
1 1 4 1 4 4 1 1
1 1 1 1 1 1 1 5


; Y :=



1 1 1 1 1 4 1 1
1 1 1 1 4 1 1 1
1 1 1 4 1 1 1 1
1 1 4 1 1 1 1 1
1 4 1 1 1 1 1 1
4 1 1 1 1 1 1 1
1 1 1 1 1 1 4 1
1 1 1 1 1 1 1 4


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The symmetric generator t89

I The matrix T89 which we seek must

(i) commute with A, C and H;
(ii) be squared by conjugation by Z.

I This leads to T89 =

 −U 0 −U
4 Ut −4
4 −Ut −4

 where

I

U =



2 −2 −2 2 −2 2 2 2
2 2 −2 −2 2 −2 2 2
2 2 2 −2 −2 2 −2 2
−2 2 2 2 −2 −2 2 2

2 −2 2 2 2 −2 −2 2
−2 2 −2 2 2 2 −2 2
−2 −2 2 −2 2 2 2 2
−2 −2 −2 −2 −2 −2 −2 2


.

I The matrix U satisfies U2 = 4U − 4I ; UUt = 4I = U +Ut , so
verification that T89 has required properties is straightforward.
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