The Thompson chain of perfect groups

Rob Curtis

CIMPA Conference July 2015

Rob Curtis, Birmingham The Thompson chain of perfect groups

3

3 ×

► We denote a free product of n copies of the cyclic group C_m by m^{*n}.

・ 回 と ・ ヨ と ・ ヨ と

- ► We denote a free product of n copies of the cyclic group C_m by m^{*n}.
- Thus

$$E = 2^{\star 3} \cong \mathrm{C}_2 \star \mathrm{C}_2 \star \mathrm{C}_2 \cong \langle a, b, c \mid a^2 = b^2 = c^2 = 1 \rangle.$$

・ 回 と ・ ヨ と ・ ヨ と

► We denote a free product of n copies of the cyclic group C_m by m^{*n}.

Thus

$$E = 2^{\star 3} \cong \mathbf{C}_2 \star \mathbf{C}_2 \star \mathbf{C}_2 \cong \langle a, b, c | a^2 = b^2 = c^2 = 1 \rangle.$$

So any group generated by three involutions is a homomorphic image of *E*.

回 と く ヨ と く ヨ と …

æ

► We denote a free product of n copies of the cyclic group C_m by m^{*n}.

Thus

$$\mathsf{E} = 2^{\star 3} \cong \mathrm{C}_2 \star \mathrm{C}_2 \star \mathrm{C}_2 \cong \langle \mathsf{a}, \mathsf{b}, \mathsf{c} \mid \mathsf{a}^2 = \mathsf{b}^2 = \mathsf{c}^2 = 1 \rangle.$$

- So any group generated by three involutions is a homomorphic image of *E*.
- Clearly the group m^{*n} possesses monomial automorphisms which permute the symmetric generators and raise them to powers co-prime to m. The group M of all monomial automorphisms of m^{*n} thus has order

 $|M| = n! \phi(m)^n$, where ϕ is the Euler totient function.

・ 同 ト ・ ヨ ト ・ ヨ ト …

If H ≤ M then we can thus form a semi-direct product of shape m^{*n}: H, a progenitor. The elements
 {t₁, t₂,..., t_n | t_i^m = 1} are the symmetric generators.

伺下 イヨト イヨト

- If H ≤ M then we can thus form a semi-direct product of shape m^{*n}: H, a progenitor. The elements {t₁, t₂,..., t_n | t_i^m = 1} are the symmetric generators.
- ► The group 3·A₇ has a subgroup of index 15 of shape 3 × L₂(7) and thus has a 15-dimensional monomial representation over any field with cube roots of unity, such as Z₇.

同 と く ヨ と く ヨ と …

- If H ≤ M then we can thus form a semi-direct product of shape m^{*n}: H, a progenitor. The elements {t₁, t₂,..., t_n | t_i^m = 1} are the symmetric generators.
- ► The group 3·A₇ has a subgroup of index 15 of shape 3 × L₂(7) and thus has a 15-dimensional monomial representation over any field with cube roots of unity, such as Z₇.
- This representation enables us to define a progenitor of shape
 P = 7^{*15}: 3 A₇ in which the central 3-element squares each of the symmetric generators by conjugation.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- If H ≤ M then we can thus form a semi-direct product of shape m^{*n}: H, a progenitor. The elements {t₁, t₂,..., t_n | t_i^m = 1} are the symmetric generators.
- ► The group 3 A₇ has a subgroup of index 15 of shape 3 × L₂(7) and thus has a 15-dimensional monomial representation over any field with cube roots of unity, such as Z₇.
- This representation enables us to define a progenitor of shape
 P = 7^{*15}: 3 · A₇ in which the central 3-element squares each of the symmetric generators by conjugation.
- ► Now A₇ acts on 15 letters in two distinct ways and it is useful to "double up" to a progenitor of form

 $P = 7^{\star(15+15)} : 3^{\cdot}S_7$

in which the "central" 3 squares one set of 15 symmetric generators while fourth powering the other 15.

(1+14) + (7+8).

回 と く ヨ と く ヨ と …

æ

(1+14) + (7+8).

If s₁ lies in the 7-orbit then the group (t₁, s₁) possesses automorphisms:

伺下 イヨト イヨト

(1+14) + (7+8).

- If s₁ lies in the 7-orbit then the group (t₁, s₁) possesses automorphisms:
 - (i) z, squaring t_1 and 4th powering s_1 ; and

伺下 イヨト イヨト

(1+14) + (7+8).

- If s₁ lies in the 7-orbit then the group (t₁, s₁) possesses automorphisms:
 - (i) z, squaring t_1 and 4th powering s_1 ; and
 - (ii) d, interchanging t_1 and $s_1 = t_1^d$.

伺 とう ヨン うちょう

(1+14) + (7+8).

- If s₁ lies in the 7-orbit then the group (t₁, s₁) possesses automorphisms:
 - (i) z, squaring t_1 and 4th powering s_1 ; and
 - (ii) d, interchanging t_1 and $s_1 = t_1^d$.
- The linear group L₂(7) is such a group and the relator (dt₁)³ defines the group. If we factor out this relator from the progenitor P we obtain:

・ 戸 ト ・ ヨ ト ・ ヨ ト

(1+14) + (7+8).

If s₁ lies in the 7-orbit then the group (t₁, s₁) possesses automorphisms:

(i) *z*, squaring t_1 and 4th powering s_1 ; and (ii) *d*, interchanging t_1 and $s_1 = t_1^d$.

The linear group L₂(7) is such a group and the relator (dt₁)³ defines the group. If we factor out this relator from the progenitor P we obtain:

 $\frac{7^{\star(15+15)}:3\cdot \mathrm{S}_7}{(dt_1)^3}\cong \mathrm{He}, \text{ the Held sporadic simple group.}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

A group of shape 3 × S_n has a subgroup to index (ⁿ₂) of shape 6 × S_{n-2} and so 3 × S_n has an (ⁿ₂) monomial representation over any field containing 6th roots of unity. Again Z₇ is a candidate.

伺 とう ヨン うちょう

- A group of shape 3 × S_n has a subgroup to index (ⁿ₂) of shape 6 × S_{n-2} and so 3 × S_n has an (ⁿ₂) monomial representation over any field containing 6th roots of unity. Again Z₇ is a candidate.
- So we may form the progenitor

$$P_n = 7^{\star \binom{n}{2}} : (3 \times S_n),$$

where a central element z of order 3 squares each of the symmetric generators, and ask what (almost) simple images such a group might have.

向下 イヨト イヨト

► The ⁿ₂ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which t_{ji} = t_{ij}⁻¹.

伺下 イヨト イヨト

- ► The ⁿ₂ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which t_{ji} = t_{ii}⁻¹.
- ▶ Thus $t_{ij}^z = t_{ij}^2$ and $(1 \ 2 \ 3) : t_{12} \rightarrow t_{23} \rightarrow t_{31} = t_{13}^{-1}$, simply permuting the subscripts.

伺下 イヨト イヨト

- ► The ⁿ₂ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which t_{ji} = t_{ii}⁻¹.
- ▶ Thus $t_{ij}^z = t_{ij}^2$ and $(1 \ 2 \ 3) : t_{12} \rightarrow t_{23} \rightarrow t_{31} = t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing

▲□→ ▲ 国 → ▲ 国 →

- ► The ⁿ₂ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which t_{ji} = t_{ii}⁻¹.
- ▶ Thus $t_{ij}^z = t_{ij}^2$ and $(1 \ 2 \ 3) : t_{12} \rightarrow t_{23} \rightarrow t_{31} = t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing
 - (i) an automorphism which squares each of them;

- ► The ⁿ₂ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which t_{ji} = t_{ii}⁻¹.
- ▶ Thus $t_{ij}^z = t_{ij}^2$ and $(1 \ 2 \ 3) : t_{12} \rightarrow t_{23} \rightarrow t_{31} = t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing
 - (i) an automorphism which squares each of them;
 - (ii) an automorphism which cycles them, and

・ 回 ト ・ ヨ ト ・ ヨ ト

- ► The ⁿ₂ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which t_{ji} = t_{ii}⁻¹.
- ▶ Thus $t_{ij}^z = t_{ij}^2$ and $(1 \ 2 \ 3) : t_{12} \rightarrow t_{23} \rightarrow t_{31} = t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing
 - (i) an automorphism which squares each of them;
 - (ii) an automorphism which cycles them, and
 - (iii) an automorphism which inverts one them, while interchanging another with the inverse of the third.

(日) (部) (注) (注) (言)

- ► The ⁿ₂ symmetric generators may be thought of as corresponding to the edges of a complete (directed) graph on n vertices, in which t_{ji} = t_{ii}⁻¹.
- ▶ Thus $t_{ij}^z = t_{ij}^2$ and $(1 \ 2 \ 3) : t_{12} \rightarrow t_{23} \rightarrow t_{31} = t_{13}^{-1}$, simply permuting the subscripts.
- Initially we must say what a triangle can generate, that is a group generated by three elements of order 7 possessing
 - (i) an automorphism which squares each of them;
 - (ii) an automorphism which cycles them, and
 - (iii) an automorphism which inverts one them, while interchanging another with the inverse of the third.
- Among such groups are $L_2(8) : 3$, S_7 , $U_3(3) : 2$.

(日) (同) (E) (E) (E)

A free product of three copies of C_7 on which certain automorphisms have been imposed.

$$7^{\star 3}$$
: $(3 \times S_3)$

$$\langle t_{12}, t_{23}, t_{31} \rangle \quad \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}.$$

回 と く ヨ と く ヨ と …

æ

The unitary group $U_3(3)$.

GF₉, the field of order 9, is taken to be {0,±1,±i,±1±i | i² = −1} and we let α denote the field automorphism which interchanges i and −i.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

The unitary group $U_3(3)$.

- GF₉, the field of order 9, is taken to be {0,±1,±i,±1±i | i² = −1} and we let α denote the field automorphism which interchanges i and −i.
- We let

$$A := \left(\begin{array}{ccc} 1+i & i & i \\ i & 1+i & i \\ i & i & 1+i \end{array}\right); \ Z := \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right),$$

・ 回 と ・ ヨ と ・ ヨ と

The unitary group $U_3(3)$.

- GF₉, the field of order 9, is taken to be {0,±1,±i,±1±i | i² = −1} and we let α denote the field automorphism which interchanges i and −i.
- We let

$$A := \left(egin{array}{cccc} 1+i & i & i \ i & 1+i & i \ i & i & 1+i \end{array}
ight); \ Z := \left(egin{array}{cccc} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{array}
ight),$$

Matrix A, which has order 3, is visibly unitary and symmetric and so conjugation by α inverts it; moreover Z, which corresponds to a rotation of the three coordinates, commutes with A. Thus

$$\langle Z, A, \alpha \rangle \cong \mathbf{3} \times \mathbf{S}_{\mathbf{3}}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

As symmetric generators we take $ts := [t_{12}, t_{23}, t_{31}] =$

$$\left[\begin{pmatrix} i & 1 & -1-i \\ 1 & 1-i & i \\ -1-i & i & -i \end{pmatrix}, \begin{pmatrix} 1 & -1 & -1-i \\ -1+i & -1+i & 0 \\ 1 & -1 & 1+i \end{pmatrix}, \begin{pmatrix} 1 & -1+i & 1 \\ -1 & -1+i & -1 \\ -1-i & 0 & 1+i \end{pmatrix} \right]$$

and find that $t_{12}t_{23}^4t_{12}t_{23}^3t_{12}^3 = A^2Z$.

If we let x = Zα, y = A, t = t₁₂ then we obtain the presentation

$$\langle x, y, t \mid x^6 = y^3 = y^x y = t^7 = t^x t^2 = t(t^y)^4 t(t^y)^3 t^3 x^2 y = 1 \rangle \cong U_3(3): 2.$$

伺 と く き と く き と

As symmetric generators we take $ts := [t_{12}, t_{23}, t_{31}] =$

$$\left[\begin{pmatrix} i & 1 & -1-i \\ 1 & 1-i & i \\ -1-i & i & -i \end{pmatrix}, \begin{pmatrix} 1 & -1 & -1-i \\ -1+i & -1+i & 0 \\ 1 & -1 & 1+i \end{pmatrix}, \begin{pmatrix} 1 & -1+i & 1 \\ -1 & -1+i & -1 \\ -1-i & 0 & 1+i \end{pmatrix} \right]$$

and find that $t_{12}t_{23}^4t_{12}t_{23}^3t_{12}^3 = A^2Z$.

If we let x = Zα, y = A, t = t₁₂ then we obtain the presentation

$$\langle x, y, t \mid x^{6} = y^{3} = y^{x}y = t^{7} = t^{x}t^{2} = t(t^{y})^{4}t(t^{y})^{3}t^{3}x^{2}y = 1 \rangle \cong U_{3}(3): 2.$$

> g<x,y,t>:=Group<x,y,t|x^6=y^3=y^x*y=t^7=t^x*t^2= > t*(t^y)^4*t*(t^y)^3*t^3*x^2*y=1>; > #g; 12096

向下 イヨト イヨト

• We find that $t_{ij}t_{ki}$ has order 4, for distinct i, j, k.

(日) (日) (日)

æ

- We find that $t_{ij}t_{ki}$ has order 4, for distinct i, j, k.
- Moreover

$$(t_{12}t_{31})^2 = (t_{23}t_{12})^2 = (t_{31}t_{23})^2 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

<回> < 回> < 回> < 回>

æ

- We find that $t_{ij}t_{ki}$ has order 4, for distinct i, j, k.
- Moreover

$$(t_{12}t_{31})^2 = (t_{23}t_{12})^2 = (t_{31}t_{23})^2 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

► Thus d = (t_{ij}t_{ki})², for distinct i, j, k is independent of the order in which i, j, k occur and thus commutes with our S₃. It visibly inverts z.

伺 とう ヨン うちょう

- We find that $t_{ij}t_{ki}$ has order 4, for distinct i, j, k.
- Moreover

$$(t_{12}t_{31})^2 = (t_{23}t_{12})^2 = (t_{31}t_{23})^2 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- ► Thus d = (t_{ij}t_{ki})², for distinct i, j, k is independent of the order in which i, j, k occur and thus commutes with our S₃. It visibly inverts z.
- So we can extend our progenitor to have shape

 $7^{\star(3+3)}$: (S₃ × S₃).

向下 イヨト イヨト

- We find that $t_{ij}t_{ki}$ has order 4, for distinct i, j, k.
- Moreover

$$(t_{12}t_{31})^2 = (t_{23}t_{12})^2 = (t_{31}t_{23})^2 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

- ► Thus d = (t_{ij}t_{ki})², for distinct i, j, k is independent of the order in which i, j, k occur and thus commutes with our S₃. It visibly inverts z.
- So we can extend our progenitor to have shape

 $7^{\star(3+3)}$: (S₃ × S₃).

• We define $t_{ij}^d = s_{ij}$, then $\langle t_{ij}, s_{ij} \rangle \cong L_2(7)$

Extending to higher values of n.

• As generators for $3 \times S_n$ we take $x = (1 \ 2 \ \dots \ n)$ and $y = (1 \ 2)z$ when we see that

$$x^{n} = y^{6} = [x, y^{2}] = (xy^{3})^{n-1} = [x, y]^{3} = [x^{2}, y]^{2} = 1$$

holds for n = 4, 5, 6, 7 and indeed, gives a presentation for the group:

・ 同 ト ・ ヨ ト ・ ヨ ト

Extending to higher values of n.

• As generators for $3 \times S_n$ we take $x = (1 \ 2 \ \dots \ n)$ and $y = (1 \ 2)z$ when we see that

$$x^{n} = y^{6} = [x, y^{2}] = (xy^{3})^{n-1} = [x, y]^{3} = [x^{2}, y]^{2} = 1$$

holds for n = 4, 5, 6, 7 and indeed, gives a presentation for the group:

```
> for i in [4..7] do
for> g<x,y>:=Group<x,y|x^i=y^6=(x,y^2)=(x*y^3)^(i-1)=
for> (x,y)^3=(x^2,y)^2=1>;
for> i,#g;
for> end for;
4 72
5 360
6 2160
7 15120
```

▲□→ ▲目→ ▲目→ 三日

We shall let t = t₁₂ when we see that y squares and inverts t; thus t^y t² = 1.

・ 同 ト ・ ヨ ト ・ ヨ ト

- We shall let t = t₁₂ when we see that y squares and inverts t; thus t^y t² = 1.
- Moreover x[y, x] = (3 4 ... n) and (y³)^{x²} = (3 4) and so we have generators for the normalizer of ⟨t₁₂⟩ in N.

同 と く ヨ と く ヨ と

- We shall let t = t₁₂ when we see that y squares and inverts t; thus t^y t² = 1.
- Moreover x[y,x] = (3 4 ... n) and (y³)^{x²} = (3 4) and so we have generators for the normalizer of ⟨t₁₂⟩ in N.
- ▶ In order to obtain an expression for our additional relation R = 1 we note that $[x, y] = (1 \ 2 \ 3)$, so may write

 $R = t(t^{x})^{4}t(t^{x})^{3}t^{3}y^{2}[x, y].$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- We shall let t = t₁₂ when we see that y squares and inverts t; thus t^y t² = 1.
- Moreover x[y,x] = (3 4 ... n) and (y³)^{x²} = (3 4) and so we have generators for the normalizer of ⟨t₁₂⟩ in N.
- ▶ In order to obtain an expression for our additional relation R = 1 we note that $[x, y] = (1 \ 2 \ 3)$, so may write

$$R = t(t^{x})^{4}t(t^{x})^{3}t^{3}y^{2}[x,y].$$

We then define

$$\mathcal{K}_n = \frac{7^{\star \binom{n}{2}} : (3 \times S_n)}{R = 1}.$$

伺下 イヨト イヨト

Coset Enumeration along the chain

 Note that xy = (2 3 ... n)z and y^x = (2 3)z generate 3 × S_{n-1} and so ⟨xy, y^x, t^x⟩ generates (an image of) K_{n-1}. We perform a coset enumeration of K_n over this subgroup.

向下 イヨト イヨト

Coset Enumeration along the chain

- Note that xy = (2 3 ... n)z and y^x = (2 3)z generate 3 × S_{n-1} and so ⟨xy, y^x, t^x⟩ generates (an image of) K_{n-1}. We perform a coset enumeration of K_n over this subgroup.
- > for i in [4..7] do
 for> g<x,y,t>:=Group<x,y,t|x^i=y^6=(x,y^2)=(x*y^3)^(i-1)
 for> (x,y)^3=(x^2,y)^2=
 for> t^7=t^y*t^2=(t,x*(y,x))=(t,(y^3)^(x^2))=
 for> t*(t^x)^4*t*(t^x)^3*t^3*y^2*(x,y)=1>;
 for> h:=sub<g|t^x,x*y,y^x>;
 for> i,Index(g,h:Hard:=true, CosetLimit:=20000000);
 for> end for;

(本間) (本語) (本語) (二語)

Coset Enumeration along the chain

- Note that xy = (2 3 ... n)z and y^x = (2 3)z generate 3 × S_{n-1} and so ⟨xy, y^x, t^x⟩ generates (an image of) K_{n-1}. We perform a coset enumeration of K_n over this subgroup.
- > for i in [4..7] do
 for> g<x,y,t>:=Group<x,y,t|x^i=y^6=(x,y^2)=(x*y^3)^(i-1)
 for> (x,y)^3=(x^2,y)^2=
 for> t^7=t^y*t^2=(t,x*(y,x))=(t,(y^3)^(x^2))=
 for> t*(t^x)^4*t*(t^x)^3*t^3*y^2*(x,y)=1>;
 for> h:=sub<g|t^x,x*y,y^x>;
 for> i,Index(g,h:Hard:=true, CosetLimit:=20000000);
 for> end for;
- ► 4 100
 - 5 416
 - 6 5346
 - 7 3091200

< □→ < 注→ < 注→ □ 注

Those familiar with the groups involved will recognise that K4: 100 is the index of $U_3(3)$ in HJ, the Hall-Janko group;

Those familiar with the groups involved will recognise that

- K4: 100 is the index of $U_3(3)$ in HJ, the Hall-Janko group;
- K5: 416 is the index of HJ in the exceptional Chevalley group ${\rm G_2}(4);$

Those familiar with the groups involved will recognise that

- K4: 100 is the index of $U_3(3)$ in HJ, the Hall-Janko group;
- K5: 416 is the index of HJ in the exceptional Chevalley group $G_2(4)$;
- K6: $5346=3 \times 1782$ is the index of $G_2(4)$ in $3 \cdot Suz$, the triple cover of the Suzuki sporadic simple group;

Those familiar with the groups involved will recognise that

- K4: 100 is the index of $U_3(3)$ in HJ, the Hall-Janko group;
- K5: 416 is the index of HJ in the exceptional Chevalley group $G_2(4)$;
- K6: $5346=3 \times 1782$ is the index of $G_2(4)$ in $3 \cdot Suz$, the triple cover of the Suzuki sporadic simple group;
- K7: $3091200 = 2 \times 1545600$ is the index of $3 \cdot Suz$ in Co₁, the largest Conway simple group.

向下 イヨト イヨト

The groups defined by our family of presentations are

 ${\rm U}_3(3):2, \ {\rm HJ}:2, \ {\rm G}_2(4):2, \ 3^{\cdot}{\rm Suz}:2 \ \text{and} \ Co_1\times 2.$

米部 シネヨシネヨシ 三日

The groups defined by our family of presentations are

 $\mathrm{U}_3(3):2, \ \mathrm{HJ}:2, \ \mathrm{G}_2(4):2, \ 3^{\cdot}\mathrm{Suz}:2 \ \text{and} \ \underline{\mathrm{Co}_1\times 2}.$

In order to proceed we must factor out the central element in K₇ to obtain Co₁. This leads to K₈ and subsequent groups collapsing to the trivial group.

伺下 イヨト イヨト

The groups defined by our family of presentations are

 $U_3(3): 2$, HJ: 2, $G_2(4): 2$, $3 \cdot Suz: 2$ and $Co_1 \times 2$.

- In order to proceed we must factor out the central element in K₇ to obtain Co₁. This leads to K₈ and subsequent groups collapsing to the trivial group.
- ► However, if we restrict our imposed automorphisms to 3 × A_n, then KA₉ ≅ Co₁, in which a 3-cycle such as (1 2 3) lies in the centre of the copy of 3 Suz generated by the complete 6-graph on the remaining 6 points.

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

In fact we end up with a complete graph on 9 vertices such that (1) Each vertex corresponds to a copy of ${\bf S_4};$

向下 イヨト イヨト

- (1) Each vertex corresponds to a copy of S_4 ;
- (2) Each edge corresponds to a copy of $L_2(7)$;

- (1) Each vertex corresponds to a copy of S_4 ;
- (2) Each edge corresponds to a copy of $L_2(7)$;
- (3) Each triangle corresponds to a copy of $U_3(3)$;

- (1) Each vertex corresponds to a copy of S_4 ;
- (2) Each edge corresponds to a copy of $L_2(7)$;
- (3) Each triangle corresponds to a copy of $U_3(3)$;
- (4) Each 4-graph corresponds to a copy of HJ;

- (1) Each vertex corresponds to a copy of S_4 ;
- (2) Each edge corresponds to a copy of $L_2(7)$;
- (3) Each triangle corresponds to a copy of $U_3(3)$;
- (4) Each 4-graph corresponds to a copy of HJ;
- (5) Each 5-graph corresponds to a copy of $G_2(4)$;

- (1) Each vertex corresponds to a copy of S_4 ;
- (2) Each edge corresponds to a copy of $L_2(7)$;
- (3) Each triangle corresponds to a copy of $U_3(3)$;
- (4) Each 4-graph corresponds to a copy of HJ;
- (5) Each 5-graph corresponds to a copy of $G_2(4)$;
- (6) Each 6-graph corresponds to a copy of $3 \cdot Suz$;

- (1) Each vertex corresponds to a copy of S_4 ;
- (2) Each edge corresponds to a copy of $L_2(7)$;
- (3) Each triangle corresponds to a copy of $U_3(3)$;
- (4) Each 4-graph corresponds to a copy of HJ;
- (5) Each 5-graph corresponds to a copy of $G_2(4)$;
- (6) Each 6-graph corresponds to a copy of 3 Suz;
- (7) Each *n*-graph for $n \ge 7$ corresponds to a copy of Co₁;

伺 ト イヨト イヨト

- (1) Each vertex corresponds to a copy of S_4 ;
- (2) Each edge corresponds to a copy of $L_2(7)$;
- (3) Each triangle corresponds to a copy of $U_3(3)$;
- (4) Each 4-graph corresponds to a copy of HJ;
- (5) Each 5-graph corresponds to a copy of $G_2(4)$;
- (6) Each 6-graph corresponds to a copy of 3 Suz;
- (7) Each *n*-graph for $n \ge 7$ corresponds to a copy of Co₁;
- (sg) Every subgraph generates the same group as the smallest complete graph containing it.

伺下 イヨト イヨト

► The binary Golay code C is a 12-dimensional subspace of the space Z²⁴₂ whose codewords (vectors) all have weight 0, 8, 12, 16 or 24. The support of a codeword is known as a C-set.

通 とう ほうとう ほうど

- ► The binary Golay code C is a 12-dimensional subspace of the space Z₂²⁴ whose codewords (vectors) all have weight 0, 8, 12, 16 or 24. The support of a codeword is known as a C-set.
- ► Having fixed a copy of C on our 24 coordinate positions the Leech lattice may be defined to be the set of all 24-dimensional integral vectors (x₁, x₂, ..., x₂₄) such that

向下 イヨト イヨト

- ► The binary Golay code C is a 12-dimensional subspace of the space Z₂²⁴ whose codewords (vectors) all have weight 0, 8, 12, 16 or 24. The support of a codeword is known as a C-set.
- Having fixed a copy of C on our 24 coordinate positions the Leech lattice may be defined to be the set of all 24-dimensional integral vectors (x₁, x₂, ..., x₂₄) such that
 (i) all entries have the same parity;

伺 とう ヨン うちょう

- ► The binary Golay code C is a 12-dimensional subspace of the space Z₂²⁴ whose codewords (vectors) all have weight 0, 8, 12, 16 or 24. The support of a codeword is known as a C-set.
- ► Having fixed a copy of C on our 24 coordinate positions the Leech lattice may be defined to be the set of all 24-dimensional integral vectors (x₁, x₂, ..., x₂₄) such that
 - (i) all entries have the same parity;
 - (ii) the set of *i* such that $x_i \equiv m \mod 4$ forms a *C*-set for m = 0, 1, 2, 3;

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

- ► The binary Golay code C is a 12-dimensional subspace of the space Z₂²⁴ whose codewords (vectors) all have weight 0, 8, 12, 16 or 24. The support of a codeword is known as a C-set.
- ► Having fixed a copy of C on our 24 coordinate positions the Leech lattice may be defined to be the set of all 24-dimensional integral vectors (x₁, x₂, ..., x₂₄) such that
 - (i) all entries have the same parity;
 - (ii) the set of *i* such that $x_i \equiv m \mod 4$ forms a *C*-set for m = 0, 1, 2, 3;
 - (iii) the sum of the entries is congruent to 0 modulo 8 if the entries are even, and to 4 modulo 8 if the entries are odd.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Miracle Octad Generator

► The 24 points permuted by M₂₄ may be arranged in a 4 × 6 array, which we think of as three 4 × 2 arrays known as bricks, in such a way that the S₃ (6 permutations) which bodily rearrange the bricks are elements of M₂₄.

The Miracle Octad Generator

- ► The 24 points permuted by M₂₄ may be arranged in a 4 × 6 array, which we think of as three 4 × 2 arrays known as bricks, in such a way that the S₃ (6 permutations) which bodily rearrange the bricks are elements of M₂₄.
- Denoting this group by $B \cong S_3$ we have that in M_{24} the subgroup *B* centralizes a copy of $L_2(7)$, and in $\cdot O$ it centralizes a copy of the alternating group A_9 .

向下 イヨト イヨト

The Miracle Octad Generator

- ► The 24 points permuted by M₂₄ may be arranged in a 4 × 6 array, which we think of as three 4 × 2 arrays known as bricks, in such a way that the S₃ (6 permutations) which bodily rearrange the bricks are elements of M₂₄.
- Denoting this group by $B \cong S_3$ we have that in M_{24} the subgroup *B* centralizes a copy of $L_2(7)$, and in $\cdot O$ it centralizes a copy of the alternating group A_9 .
- For convenience we label the 24 points as shown

8	7	16	15	24	23
1	3	9	11	17	19
2	6	10	14	18	22
4	5	12	13	20	21

The centralizer of the MOG group

Label	Action in $L_2(7)$	Action in A ₉
(a)	(1 2 3 4 5 6 7)	(1 2 3 4 5 6 7)
(<i>b</i>)	(8 7)(1 6)(2 3)(4 5)	(8 7)(1 6)(2 3)(4 5)
(c)	(1 2 4)(3 6 5)	(1 2 4)(3 6 5)
(<i>d</i>)		(8 7)(1 3)(2 6)(4 5)
(<i>e</i>)	(8 5)(7 4)(1 2)(3 6)	(8 5)(7 4)(1 2)(3 6)
(<i>h</i>)		(1 4 2)(3 6 5)
(j)		(8 9)(1 6)(2 5)(3 4)

< ≣⇒

A ■

Э

►

We seek matrix J representing $j = (8 \ 9)(1 \ 6)(2 \ 5)(3 \ 4)$ which inverts (a) and commutes with (c), represented by matrices A and C respectively.

$$B = \langle \begin{bmatrix} 0 & I_8 & 0 \\ 0 & 0 & I_8 \\ I_8 & 0 & 0 \end{bmatrix}, \begin{bmatrix} I_8 & 0 & 0 \\ 0 & 0 & I_8 \\ 0 & I_8 & 0 \end{bmatrix} \rangle \cong S_3$$

高 とう ヨン うまと

We seek matrix J representing $j = (8 \ 9)(1 \ 6)(2 \ 5)(3 \ 4)$ which inverts (a) and commutes with (c), represented by matrices A and C respectively.

$$B = \langle \begin{bmatrix} 0 & I_8 & 0 \\ 0 & 0 & I_8 \\ I_8 & 0 & 0 \end{bmatrix}, \begin{bmatrix} I_8 & 0 & 0 \\ 0 & 0 & I_8 \\ 0 & I_8 & 0 \end{bmatrix} \rangle \cong S_3$$

Any matrix commuting with B has shape

$$\begin{bmatrix} X & Y & Y \\ Y & X & Y \\ Y & Y & X \end{bmatrix}$$

which enables us to write down the precise form of J.

• We seek an element J corresponding to $(8 \ 9)(1 \ 6)(2 \ 5)(3 \ 4)$, which commutes with $C \sim (1 \ 2 \ 4)(3 \ 6 \ 5)$ and inverts $A \sim (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$.

▲□→ ▲ 国 → ▲ 国 →

• We seek an element J corresponding to $(8 \ 9)(1 \ 6)(2 \ 5)(3 \ 4)$, which commutes with $C \sim (1 \ 2 \ 4)(3 \ 6 \ 5)$ and inverts $A \sim (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$.

・ 回 と ・ ヨ と ・ ヨ と

The matrix T₈₉ which we seek must

(4回) (4回) (日)

æ

The matrix T₈₉ which we seek must
 (i) commute with A, C and H;

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

- The matrix T_{89} which we seek must
 - (i) commute with A, C and H;
 - (ii) be squared by conjugation by Z.

向下 イヨト イヨト

æ

 The matrix T₈₉ which we seek must (i) commute with A, C and H; (ii) be squared by conjugation by Z. 									
		Г	-U	0	-U	1			
This leads to	5 T89 :	_	4	U^t	-4	l w	here		
 This leads to 	05		4	$-U^t$	—4				
		L .				_			
	Γ2	$^{-2}$	-2	2	-2	2	2	2	1
	2	2	-2	$^{-2}$	2	$^{-2}$	2	2	
	2	2	2	-2	-2	2	-2	2	
	-2	2	2	2	-2	-2	2	2	
$U \equiv$	2	-2	2	2	2	-2	-2	2	·
	-2	2	$^{-2}$	2	2	2	$^{-2}$	2	
	-2	$^{-2}$	2	-2	2	2	2	2	
U =	L –2	-2	-2	-2	-2	-2	-2	2	

•

ヨト ヨ

● ▶ < ミ ▶

 The matrix T₈₉ which we seek must (i) commute with A, C and H; (ii) be squared by conjugation by Z. 									
This leads to $T_{89} = \begin{bmatrix} -U & 0 & -U \\ 4 & U^t & -4 \\ 4 & -U^t & -4 \end{bmatrix}$ where									
<i>U</i> =	$\begin{bmatrix} 2 & -2 \\ 2 & 2 \\ 2 & 2 \\ -2 & 2 \\ \hline 2 & -2 \\ -2 & 2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \end{bmatrix}$	$ \begin{array}{r} -2 \\ -2 \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -$	$2 \\ -2 \\ -2 \\ 2 \\ 2 \\ -2 \\ -2 \\ -2 \\ -2$	$ \begin{array}{c} -2 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ 2 \\ -2 \\ \end{array} $	$2 \\ -2 \\ 2 \\ -2 \\ -2 \\ 2 \\ 2 \\ -2 \\ -2 $	2 2 -2 2 -2 -2 2 -2 -2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

► The matrix U satisfies U² = 4U - 4I; UU^t = 4I = U + U^t, so verification that T₈₉ has required properties is straightforward.